fc_mkldnn_op.cc 17.0 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20

M
mozga-intel 已提交
21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
29 30 31
using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
32 33
using framework::LoDTensor;
using platform::GetMKLDNNFormat;
34
using platform::MKLDNNDeviceContext;
35
using platform::MKLDNNGetDataType;
36
using platform::to_void_cast;
M
mozga-intel 已提交
37

38 39 40 41 42
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

M
Michał Gallus 已提交
43
template <typename T_in, typename T_w, typename T_out>
44 45 46
class FCMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T_in,
                                               dnnl::inner_product_forward> {
M
mozga-intel 已提交
47
 public:
48 49
  FCMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                  const platform::MKLDNNDeviceContext& dev_ctx,
50 51 52 53
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
                  phi::DenseTensor* out,
54 55 56 57 58 59 60 61 62 63 64 65 66 67
                  const int in_num_col_dims,
                  dnnl::engine mkldnn_engine,
                  platform::Place cpu_place)
      : platform::MKLDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
            mkldnn_engine, cpu_place),
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
68 69
    }

70 71 72
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
73
    }
74

75
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
76

77
    dnnl::memory::desc bias_md;
78

79 80 81 82 83 84 85 86 87 88 89
    auto src_md = dnnl::memory::desc(
        {MB, IC}, MKLDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
    auto weights_md = dnnl::memory::desc(
        {OC, IC}, MKLDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
    auto dst_md = dnnl::memory::desc(
        {MB, OC}, MKLDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
                                   MKLDNNGetDataType<float>(),
                                   dnnl::memory::format_tag::a);
    }
90

91 92
    dnnl::primitive_attr attrs;
    HandlePostOps(ctx, &attrs);
A
Adam 已提交
93

94 95 96 97 98 99
    this->AcquireForwardPrimitiveDescriptor(attrs,
                                            prop_kind::forward_inference,
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
100 101
  }

102
 private:
103 104 105 106 107 108 109 110 111 112 113
  void HandlePostOps(const paddle::framework::ExecutionContext& ctx,
                     dnnl::primitive_attr* attrs) {
    static std::unordered_map<std::string, dnnl::algorithm> algo_map = {
        {"relu", dnnl::algorithm::eltwise_relu},
        {"gelu", dnnl::algorithm::eltwise_gelu},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"tanh", dnnl::algorithm::eltwise_tanh},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"mish", dnnl::algorithm::eltwise_mish}};
114

115 116 117 118 119 120
    std::vector<float> output_shift_scale;
    float scale = 1.0f;
    if (IsInt8<T_w>()) {
      std::tie(output_shift_scale, scale) = ComputeOutputShiftScale(ctx);
      int mask = CreateMask(1, output_shift_scale.size() > 1);
      attrs->set_output_scales(mask, output_shift_scale);
121
    }
122

123
    dnnl::post_ops post_ops;
124

125 126 127 128
    constexpr float sum_scale = 1.0f;
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
      post_ops.append_sum(sum_scale);
129
    }
M
mozga-intel 已提交
130

131
    std::string activation_type = ctx.Attr<std::string>("activation_type");
M
mozga-intel 已提交
132

133 134 135
    if (activation_type.empty() == false) {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
M
Michał Gallus 已提交
136

137
      post_ops.append_eltwise(scale, algo_map[activation_type], alpha, beta);
138
    }
139

140
    attrs->set_post_ops(post_ops);
141 142
  }

M
Michał Gallus 已提交
143 144
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
145 146 147
  std::vector<float> ComputeBiasScales(
      const float scale_in, const std::vector<float>& scale_weights) {
    std::vector<float> bias_scales(scale_weights.size());
M
Michał Gallus 已提交
148

149 150
    for (size_t i = 0; i < bias_scales.size(); ++i) {
      if (scale_weights[i] == 0.0)
M
Michał Gallus 已提交
151 152
        bias_scales[i] = 1.0f;
      else
153
        bias_scales[i] = scale_in * scale_weights[i];
M
Michał Gallus 已提交
154 155 156 157 158 159 160 161 162 163
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
164 165
  std::tuple<std::vector<float>, float> ComputeOutputShiftScale(
      const ExecutionContext& ctx) {
M
Michał Gallus 已提交
166 167
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
168 169
    bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
170

M
Michał Gallus 已提交
171
    // If the output will be in floats, we don't multiply by scale_out.
172

173 174 175 176 177 178
    float scale = (!force_fp32_output && has_activation)
                      ? ctx.Attr<float>("Scale_out")
                      : 1.0f;
    float inner_scale = (force_fp32_output || has_activation)
                            ? 1.0f
                            : ctx.Attr<float>("Scale_out");
M
Michał Gallus 已提交
179 180 181 182 183
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
184
        output_shift_scale[i] = inner_scale;
M
Michał Gallus 已提交
185 186
      else
        output_shift_scale[i] =
187
            inner_scale / (scale_in_data * scale_weights_data[i]);
M
Michał Gallus 已提交
188 189
    }

190
    return make_tuple(output_shift_scale, scale);
M
Michał Gallus 已提交
191 192 193 194 195 196 197 198 199 200
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

201 202 203 204 205 206
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const dnnl::primitive_attr& attrs) {
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
207

208 209 210 211 212
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
213

214 215 216 217 218
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
    astream.wait();
M
Michał Gallus 已提交
219

220 221
    return target_memory_p;
  }
222

223 224
  std::string memory_key_;
  const platform::MKLDNNDeviceContext& dev_ctx_;
M
Michał Gallus 已提交
225

226
 public:
227 228
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
229 230 231 232 233 234 235
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
      user_md = user_md.reshape(this->fwd_pd_->src_desc().dims());
M
Michał Gallus 已提交
236 237
    }

238 239
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
240
  }
M
mozga-intel 已提交
241

242
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
243
      const phi::DenseTensor* bias,
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
      const float scale_in,
      const std::vector<float>& scale_weights) {
    const float* bias_data = bias->data<float>();

    if (IsInt8<T_w>() == false) {
      // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                              to_void_cast<float>(bias_data));
    } else {
      const std::string bias_key = this->memory_key_ + "@bias";
      auto memory_p = std::static_pointer_cast<dnnl::memory>(
          this->dev_ctx_.GetBlob(bias_key));

      if (!memory_p) {
        const auto& scale_data = ComputeBiasScales(scale_in, scale_weights);
        dnnl::primitive_attr attrs;

        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        auto user_md = dnnl::memory::desc({bias->dims()[0]},
                                          MKLDNNGetDataType<float>(),
                                          dnnl::memory::format_tag::a);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->bias_desc(),
            to_void_cast<float>(bias_data),
            attrs);
      }
      return memory_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
279
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
280 281 282
    const std::string weights_key = this->memory_key_ + "@weights";
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
      auto weights_dims = this->fwd_pd_->weights_desc().dims();

      auto user_md = dnnl::memory::desc(weights_dims,
                                        MKLDNNGetDataType<float>(),
                                        dnnl::memory::format_tag::io);

      if (IsInt8<T_w>()) {
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
            attrs);
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
312
  }
M
mozga-intel 已提交
313

314
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
315
      const ExecutionContext& ctx, phi::DenseTensor* out) {
316 317
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
318
      auto* residual_param = ctx.Output<phi::DenseTensor>("ResidualData");
319 320

      PADDLE_ENFORCE_EQ(
321
          out->dims(),
322
          residual_param->dims(),
323 324 325 326
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
327
              out->dims().size(),
328
              residual_param->dims().size()));
329

330
      out->ShareDataWith(*residual_param);
331
    }
332
    return this->template AcquireDstMemory<T_out>(out);
333 334
  }  // namespace operators
};   // namespace paddle
335

336 337 338 339 340 341
template <typename T_in, typename T_w>
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    if (force_fp32_output) {
      this->RunKernel<float>(ctx);
    } else if (IsInt8<T_in>()) {
      if (fuse_relu) {
        this->RunKernel<uint8_t>(ctx);
      } else {
        this->RunKernel<int8_t>(ctx);
      }
    } else {
      this->RunKernel<T_in>(ctx);
    }
  }

  template <typename T_out = T_w>
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<LoDTensor>("Input");
363 364
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    auto out = ctx.Output<LoDTensor>("Out");

    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

    const float scale_in = ctx.Attr<float>("Scale_in");
    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

    RecomputeOutputDims(ctx, x, weights, out);

    FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                              dev_ctx,
                                              x,
                                              weights,
                                              bias,
                                              out,
                                              in_col_dims,
                                              mkldnn_engine,
                                              ctx.GetPlace());

    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
    auto weights_memory_p =
        handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
    auto dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);

    auto fc_p = handler.AcquireForwardPrimitive();
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    std::unordered_map<int, dnnl::memory> fc_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    if (bias) {
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(bias, scale_in, scale_weights);
      fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
    }

    fc_p->execute(astream, fc_args);
    astream.wait();

    out->set_mem_desc(
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims())));
408
  }
M
mozga-intel 已提交
409

410
  void RecomputeOutputDims(const ExecutionContext& ctx,
411
                           const LoDTensor* x,
412
                           const phi::DenseTensor* weights,
413
                           LoDTensor* out) const {
L
luotao1 已提交
414
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
415
    bool padding_weights = ctx.Attr<bool>("padding_weights");
416 417
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
418 419
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
420
    std::vector<int64_t> output_dims;
421 422
    FCOutputSize(x->dims(),
                 weights->dims(),
423 424
                 output_dims,
                 in_num_col_dims,
425
                 padding_weights);
426 427
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
428 429
  }
};
M
mozga-intel 已提交
430 431 432 433

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
434 435 436 437
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
438 439 440 441 442
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
                                    ops::kFCMKLDNNFP32,
443
                                    ops::FCMKLDNNKernel<float, float>);
M
Michał Gallus 已提交
444

445
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
446 447 448 449 450
    fc,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
    ops::kFCMKLDNNFP32,
451 452
    ops::FCMKLDNNKernel<paddle::platform::bfloat16,
                        paddle::platform::bfloat16>);
453

454 455 456 457 458
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
                                    ops::kFCMKLDNNINT8,
459
                                    ops::FCMKLDNNKernel<uint8_t, int8_t>);
M
Michał Gallus 已提交
460

461 462 463 464 465
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
                                    ops::kFCMKLDNNINT8,
466
                                    ops::FCMKLDNNKernel<int8_t, int8_t>);