process_mesh.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
16 17 18

import numpy as np

19
import paddle
20

21 22 23
# Use to store the previous and current process mesh
_g_previous_process_mesh = None
_g_current_process_mesh = None
24 25


26 27 28
def get_current_process_mesh():
    global _g_current_process_mesh
    return _g_current_process_mesh
29 30


31 32 33 34 35
def set_current_process_mesh(process_mesh):
    global _g_previous_process_mesh
    global _g_current_process_mesh
    _g_previous_process_mesh = _g_current_process_mesh
    _g_current_process_mesh = process_mesh
36 37


38 39 40 41
def reset_current_process_mesh():
    global _g_previous_process_mesh
    global _g_current_process_mesh
    _g_current_process_mesh = _g_previous_process_mesh
42

43

44
class ProcessMesh:
45
    """
46
    The `Processmesh` object describes the topology of the used processes.
47

48 49 50 51 52
    Args:
        mesh (list|numpy.array): an n-dimensional array describes the toplogy
            of the processes.
        dim_names (list, optional): the i-th element of this list gives the name of the
            i-th dimension of the mesh.
53

54 55 56 57
    Examples:
        .. code-block:: python

            import paddle
58

59 60 61
            mesh = auto.ProcessMesh([[2, 4, 5], [0, 1, 3]], dim_names=["x", "y"])
            assert mesh.shape == [2, 3]
            assert mesh.processe_ids == [2, 4, 5, 0, 1, 3]
62 63 64

    """

65 66 67 68 69 70 71 72
    def __init__(self, mesh=None, dim_names=None, shape=None, process_ids=None):
        # Use shape and process_ids just for compatibility
        # Users should not use these directly
        if mesh is None:
            assert shape is not None
            assert process_ids is not None
            mesh = np.array(process_ids).reshape(shape)

73
        if not isinstance(mesh, list) and not isinstance(mesh, np.ndarray):
74
            raise ValueError(
75 76
                'The mesh must be an instance of list or np.ndarray.'
            )
77 78 79 80 81 82 83
        if isinstance(mesh, list):
            mesh = np.array(mesh)

        self._mesh = mesh
        self._shape = list(self._mesh.shape)
        self._process_ids = self._mesh.flatten().tolist()

84 85 86 87 88 89
        assert all(
            isinstance(p, int) for p in self._process_ids
        ), "All elements of the mesh must be integer"
        assert (
            min(self._process_ids) >= 0
        ), 'All elements of the mesh must be >= 0.'
90 91
        unique_process_ids = set(self._process_ids)
        assert len(unique_process_ids) == len(
92 93
            self._process_ids
        ), 'All elements of the mesh must be unique.'
94 95

        if dim_names is not None:
96 97 98
            assert len(dim_names) == len(
                self._shape
            ), "The length of dims_names must be same as the shape of the mesh."
99 100 101 102
            self._dim_names = copy.deepcopy(dim_names)
        else:
            self._dim_names = ["d" + str(i) for i in range(len(self._shape))]
        unique_dim_names = set(self._dim_names)
103 104 105
        assert len(unique_dim_names) == len(
            self._dim_names
        ), 'All dim_names {} must be unique.'.format(dim_names)
106

107
        # Store all process meshes
108
        from .dist_context import get_default_distributed_context
109

110 111
        default_dist_cxt = get_default_distributed_context()
        default_dist_cxt.add_process_mesh(self)
112
        # Add new processes to process group 0
113
        from .process_group import get_process_group
114

115 116
        pg0 = get_process_group(0)
        pg0.add_ranks(self.processes)
117 118

    @property
119 120 121
    def shape(self):
        """
        Get the shape of this ProcessMesh.
122
        """
123
        return self._shape
124 125

    @property
126 127 128
    def process_ids(self):
        """
        Get the process ids belonging to this ProcessMesh.
129
        """
130 131 132 133 134 135 136 137
        return self._process_ids

    @property
    def dim_names(self):
        """
        Get the dimension names of this ProcessMesh.
        """
        return self._dim_names
138 139 140 141

    @property
    def ndim(self):
        """
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        Get the number of dimension of this ProcessMesh.
        """
        return len(self._shape)

    @property
    def mesh(self):
        """
        Get the underlying mesh of ProcessMesh.
        """
        return self._mesh

    @property
    def topology(self):
        return self._shape

    @property
    def processes(self):
        return self._process_ids

    def __getitem__(self, index):
        if isinstance(index, tuple):
            new_dim_names = []
            for i, item in enumerate(index):
                if isinstance(item, slice):
                    new_dim_names.append(self._dim_names[i])
            new_mesh = self._mesh[index]
            if new_mesh.shape:
                return ProcessMesh(new_mesh, new_dim_names)
            else:
                # Wrap a scalar into a list but without dim_names
                return ProcessMesh([new_mesh])
        elif isinstance(index, slice):
            new_mesh = self._mesh[index]
            new_dim_names = self._dim_names
            return ProcessMesh(new_mesh, new_dim_names)
        else:
            new_mesh = self._mesh[index]
            new_dim_names = self._dim_names[1:]
180 181 182 183
            if new_mesh.shape:
                return ProcessMesh(new_mesh, new_dim_names)
            else:
                return ProcessMesh([new_mesh])
184 185 186 187 188 189 190 191 192 193

    def __enter__(self):
        set_current_process_mesh(self)
        default_prog = paddle.fluid.default_main_program()
        cur_block = default_prog.current_block()
        self._old_var_names = list(cur_block.vars.keys())
        self._old_op_size = len(cur_block.ops)

    def __exit__(self, exc_type, exc_value, exc_traceback):
        from .dist_op import DistributedOperator
194
        from .dist_tensor import DistributedTensor
195

196 197 198 199 200
        default_prog = paddle.fluid.default_main_program()
        cur_block = default_prog.current_block()
        new_var_names = list(cur_block.vars.keys())
        new_op_size = len(cur_block.ops)
        from .dist_context import get_default_distributed_context
201

202 203 204 205 206
        default_dist_ctx = get_default_distributed_context()
        for name in new_var_names:
            if name not in self._old_var_names:
                tensor = cur_block.vars[name]
                dist_tensor = default_dist_ctx.get_dist_tensor_for_program(
207 208
                    tensor
                )
209
                if dist_tensor is None:
210 211 212
                    dist_tensor = DistributedTensor(
                        cur_block.vars[name], {"process_mesh": self}
                    )
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                    dist_tensor.dist_attr.mark_annotated("process_mesh")
                    default_dist_ctx.add_dist_tensor_for_program(dist_tensor)
                else:
                    if dist_tensor.dist_attr.process_mesh is None:
                        dist_tensor.dist_attr.process_mesh = self
                        dist_tensor.dist_attr.mark_annotated("process_mesh")

        for idx in range(self._old_op_size, new_op_size):
            op = cur_block.ops[idx]
            dist_op = default_dist_ctx.get_dist_op_for_program(op)
            if dist_op is None:
                dist_op = DistributedOperator(op, {"process_mesh": self})
                dist_op.dist_attr.mark_annotated("process_mesh")
                default_dist_ctx.add_dist_op_for_program(dist_op)
            else:
                if dist_op.dist_attr.process_mesh is None:
                    dist_op.dist_attr.process_mesh = self
                    dist_op.dist_attr.mark_annotated("process_mesh")
        reset_current_process_mesh()
232 233 234 235

    def __eq__(self, other):
        if not isinstance(other, ProcessMesh):
            return False
236
        if self.shape != other.shape or self.process_ids != other.process_ids:
237 238 239 240 241 242 243
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

    def __str__(self):
244
        str = "shape {}, process_ids {}, dim_nams {}".format(
245 246
            self.shape, self.process_ids, self.dim_names
        )
247
        return str