process_mesh.py 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16
import copy
17
import paddle
18

19 20 21
# Use to store the previous and current process mesh
_g_previous_process_mesh = None
_g_current_process_mesh = None
22 23


24 25 26
def get_current_process_mesh():
    global _g_current_process_mesh
    return _g_current_process_mesh
27 28


29 30 31 32 33
def set_current_process_mesh(process_mesh):
    global _g_previous_process_mesh
    global _g_current_process_mesh
    _g_previous_process_mesh = _g_current_process_mesh
    _g_current_process_mesh = process_mesh
34 35


36 37 38 39
def reset_current_process_mesh():
    global _g_previous_process_mesh
    global _g_current_process_mesh
    _g_current_process_mesh = _g_previous_process_mesh
40

41

42 43
class ProcessMesh(object):
    """
44
    The `Processmesh` object describes the topology of the used processes.
45

46 47 48 49 50
    Args:
        mesh (list|numpy.array): an n-dimensional array describes the toplogy
            of the processes.
        dim_names (list, optional): the i-th element of this list gives the name of the
            i-th dimension of the mesh.
51

52 53 54 55
    Examples:
        .. code-block:: python

            import paddle
56

57 58 59
            mesh = auto.ProcessMesh([[2, 4, 5], [0, 1, 3]], dim_names=["x", "y"])
            assert mesh.shape == [2, 3]
            assert mesh.processe_ids == [2, 4, 5, 0, 1, 3]
60 61 62

    """

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    def __init__(self, mesh=None, dim_names=None, shape=None, process_ids=None):
        # Use shape and process_ids just for compatibility
        # Users should not use these directly
        if mesh is None:
            assert shape is not None
            assert process_ids is not None
            mesh = np.array(process_ids).reshape(shape)

        if not isinstance(mesh, list) and \
           not isinstance(mesh, np.ndarray):
            raise ValueError(
                'The mesh must be an instance of list or np.ndarray.')
        if isinstance(mesh, list):
            mesh = np.array(mesh)

        self._mesh = mesh
        self._shape = list(self._mesh.shape)
        self._process_ids = self._mesh.flatten().tolist()

        assert all(isinstance(p, int) for p in self._process_ids), \
            ("All elements of the mesh must be integer")
        assert min(
            self._process_ids) >= 0, ('All elements of the mesh must be >= 0.')
        unique_process_ids = set(self._process_ids)
        assert len(unique_process_ids) == len(
            self._process_ids), ('All elements of the mesh must be unique.')

        if dim_names is not None:
            assert len(dim_names) == len(self._shape), \
                ("The length of dims_names must be same as the shape of the mesh.")
            self._dim_names = copy.deepcopy(dim_names)
        else:
            self._dim_names = ["d" + str(i) for i in range(len(self._shape))]
        unique_dim_names = set(self._dim_names)
        assert len(unique_dim_names) == len(self._dim_names), (
            'All dim_names {} must be unique.'.format(dim_names))
99

100
        # Store all process meshes
101 102 103
        from .dist_context import get_default_distributed_context
        default_dist_cxt = get_default_distributed_context()
        default_dist_cxt.add_process_mesh(self)
104
        # Add new processes to process group 0
105 106 107
        from .process_group import get_process_group
        pg0 = get_process_group(0)
        pg0.add_ranks(self.processes)
108 109

    @property
110 111 112
    def shape(self):
        """
        Get the shape of this ProcessMesh.
113
        """
114
        return self._shape
115 116

    @property
117 118 119
    def process_ids(self):
        """
        Get the process ids belonging to this ProcessMesh.
120
        """
121 122 123 124 125 126 127 128
        return self._process_ids

    @property
    def dim_names(self):
        """
        Get the dimension names of this ProcessMesh.
        """
        return self._dim_names
129 130 131 132

    @property
    def ndim(self):
        """
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        Get the number of dimension of this ProcessMesh.
        """
        return len(self._shape)

    @property
    def mesh(self):
        """
        Get the underlying mesh of ProcessMesh.
        """
        return self._mesh

    @property
    def topology(self):
        return self._shape

    @property
    def processes(self):
        return self._process_ids

    def __getitem__(self, index):
        if isinstance(index, tuple):
            new_dim_names = []
            for i, item in enumerate(index):
                if isinstance(item, slice):
                    new_dim_names.append(self._dim_names[i])
            new_mesh = self._mesh[index]
            if new_mesh.shape:
                return ProcessMesh(new_mesh, new_dim_names)
            else:
                # Wrap a scalar into a list but without dim_names
                return ProcessMesh([new_mesh])
        elif isinstance(index, slice):
            new_mesh = self._mesh[index]
            new_dim_names = self._dim_names
            return ProcessMesh(new_mesh, new_dim_names)
        else:
            new_mesh = self._mesh[index]
            new_dim_names = self._dim_names[1:]
            return ProcessMesh(new_mesh, new_dim_names)

    def __enter__(self):
        set_current_process_mesh(self)
        default_prog = paddle.fluid.default_main_program()
        cur_block = default_prog.current_block()
        self._old_var_names = list(cur_block.vars.keys())
        self._old_op_size = len(cur_block.ops)

    def __exit__(self, exc_type, exc_value, exc_traceback):
        from .dist_tensor import DistributedTensor
        from .dist_op import DistributedOperator
        default_prog = paddle.fluid.default_main_program()
        cur_block = default_prog.current_block()
        new_var_names = list(cur_block.vars.keys())
        new_op_size = len(cur_block.ops)
        from .dist_context import get_default_distributed_context
        default_dist_ctx = get_default_distributed_context()
        for name in new_var_names:
            if name not in self._old_var_names:
                tensor = cur_block.vars[name]
                dist_tensor = default_dist_ctx.get_dist_tensor_for_program(
                    tensor)
                if dist_tensor is None:
                    dist_tensor = DistributedTensor(cur_block.vars[name],
                                                    {"process_mesh": self})
                    dist_tensor.dist_attr.mark_annotated("process_mesh")
                    default_dist_ctx.add_dist_tensor_for_program(dist_tensor)
                else:
                    if dist_tensor.dist_attr.process_mesh is None:
                        dist_tensor.dist_attr.process_mesh = self
                        dist_tensor.dist_attr.mark_annotated("process_mesh")

        for idx in range(self._old_op_size, new_op_size):
            op = cur_block.ops[idx]
            dist_op = default_dist_ctx.get_dist_op_for_program(op)
            if dist_op is None:
                dist_op = DistributedOperator(op, {"process_mesh": self})
                dist_op.dist_attr.mark_annotated("process_mesh")
                default_dist_ctx.add_dist_op_for_program(dist_op)
            else:
                if dist_op.dist_attr.process_mesh is None:
                    dist_op.dist_attr.process_mesh = self
                    dist_op.dist_attr.mark_annotated("process_mesh")
        reset_current_process_mesh()
216 217 218 219

    def __eq__(self, other):
        if not isinstance(other, ProcessMesh):
            return False
220
        if self.shape != other.shape or self.process_ids != other.process_ids:
221 222 223 224 225 226 227
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

    def __str__(self):
228 229
        str = "shape {}, process_ids {}, dim_nams {}".format(
            self.shape, self.process_ids, self.dim_names)
230
        return str