test_layout_autotune.py 7.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import os
import json
import tempfile
18
import unittest
19
import warnings
20
import numpy
21 22

import paddle
23 24 25 26
import paddle.nn.functional as F


class SimpleNet(paddle.nn.Layer):
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(self, data_format="NCHW", class_num=2):
        super(SimpleNet, self).__init__()
        self.conv = paddle.nn.Conv2D(3, 8, (3, 3))
        self.bn = paddle.nn.BatchNorm(num_channels=8)
        self.relu = paddle.nn.ReLU()
        self.pool = paddle.nn.AvgPool2D(kernel_size=2, stride=2)
        self.flatten = paddle.nn.Flatten()
        self.fc = paddle.nn.Linear(392, class_num)

    def forward(self, image):
        conv_out = self.conv(image)
        bn_out = self.bn(conv_out)
        out = self.relu(bn_out)
        out = self.pool(out)
        out = self.flatten(out)
        out = self.fc(out)
        return conv_out, out


class LayoutAutoTune(unittest.TestCase):
48

49 50 51 52 53 54 55
    def test_config(self):
        paddle.fluid.core.enable_layout_autotune()
        if self.use_autoune():
            self.assertEqual(paddle.fluid.core.use_layout_autotune(), True)
            paddle.fluid.core.disable_layout_autotune()
        self.assertEqual(paddle.fluid.core.use_layout_autotune(), False)

56 57 58
    def setUp(self):
        self.use_autoune()

59 60
    def use_autoune(self):
        if paddle.is_compiled_with_cuda():
61 62 63 64
            paddle.incubate.autotune.set_config(
                config={"layout": {
                    "enable": True
                }})
65 66
            return paddle.fluid.core.use_layout_autotune()
        else:
67 68 69 70 71 72
            config = {"layout": {"enable": False}}
            tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False)
            json.dump(config, tfile)
            tfile.close()
            paddle.incubate.autotune.set_config(tfile.name)
            os.remove(tfile.name)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            return paddle.fluid.core.use_layout_autotune()

    def train(self, data_format):
        model = SimpleNet(data_format="NCHW", class_num=2)
        data = paddle.rand([1, 3, 16, 16])
        if (data_format == "NHWC"):
            data = paddle.rand([1, 16, 16, 3])
        label_data = paddle.randint(0, 1, shape=[1, 1], dtype="int64")
        optimizer = paddle.optimizer.SGD(learning_rate=0.0001,
                                         parameters=model.parameters())
        scaler = paddle.amp.GradScaler()
        for i in range(2):
            with paddle.amp.auto_cast(level="O2"):
                conv_out, predict = model(data)
                loss = F.cross_entropy(predict, label=label_data)
                loss = loss.mean()

            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.minimize(optimizer, scaled)
        return conv_out, predict

    def test_enable_autotune(self):
96 97 98
        conv_out, predict = self.train(data_format="NCHW")
        self.assertEqual(conv_out.shape, [1, 8, 14, 14])
        self.assertEqual(predict.shape, [1, 2])
99 100 101 102 103 104 105 106 107 108 109

    def test_transpose_op_transposer(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        label_data = paddle.randint(0, 1, shape=[1, 1], dtype="int64")
        optimizer = paddle.optimizer.SGD(learning_rate=0.0001,
                                         parameters=conv.parameters())
        scaler = paddle.amp.GradScaler()
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
110
            # layout tuner will transpose conv_out to
111 112 113 114 115 116 117
            # [1, 8, 14, 12] with NCHW before the following transpose op.
            out = paddle.transpose(conv_out, perm=[0, 3, 1, 2])
            loss = out.mean()
        scaled = scaler.scale(loss)
        scaled.backward()
        scaler.minimize(optimizer, scaled)

118 119
        self.assertEqual(conv_out.shape, [1, 8, 14, 12])
        self.assertEqual(out.shape, [1, 12, 8, 14])
120 121 122 123 124 125 126 127 128 129 130 131 132

    def test_flatten_op_transposer(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            # layout tuner will transpose conv_out to
            # [1, 8, 14, 12] with NCHW before the following flatten op
            # because it flatten the C and H dimensions.
            out = flatten(conv_out)

133 134
        self.assertEqual(conv_out.shape, [1, 8, 14, 12])
        self.assertEqual(out.shape, [1, 112, 12])
135

136 137 138 139 140 141 142
    def test_argmax_op_transposer_keep_dims(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.argmax(conv_out, axis=1, keepdim=True)
143 144
        self.assertEqual(conv_out.shape, [1, 8, 14, 12])
        self.assertEqual(out.shape, [1, 1, 14, 12])
145

146 147 148 149 150 151 152 153 154
    def test_concat_op_transposer(self):
        in1 = paddle.rand([1, 8, 14, 12])
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.concat(x=[conv_out, in1], axis=0)

155 156
        self.assertEqual(conv_out.shape, [1, 8, 14, 12])
        self.assertEqual(out.shape, [2, 8, 14, 12])
157 158 159 160 161 162 163 164 165 166 167

    def test_concat_op_no_transposer(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data1 = paddle.rand([1, 3, 16, 14])
        data2 = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out1 = conv(data1)
            conv_out2 = conv(data2)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.concat(x=[conv_out1, conv_out2], axis=0)

168 169
        self.assertEqual(conv_out1.shape, [1, 8, 14, 12])
        self.assertEqual(out.shape, [2, 8, 14, 12])
170

171

172
class TestAutoTuneAPI(unittest.TestCase):
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187
    def test_set_config_warnings(self):
        with warnings.catch_warnings(record=True) as w:
            config = {"layout": {"enable": 1}}
            # On linux, we can open the file again to read the content
            # without closing the file, but on windows system, there is
            # no permission to open it again without closing it.
            tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False)
            json.dump(config, tfile)
            tfile.close()
            paddle.incubate.autotune.set_config(tfile.name)
            os.remove(tfile.name)
            self.assertTrue(len(w) == 1)


188 189
if __name__ == '__main__':
    unittest.main()