Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
95f66c26
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
95f66c26
编写于
6月 14, 2022
作者:
F
freeliuzc
提交者:
GitHub
6月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use tempfile to place all the temporary files. Modify some code structure. (#43376)
上级
59f89236
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
166 addition
and
120 deletion
+166
-120
python/paddle/fluid/tests/unittests/test_directory_migration.py
.../paddle/fluid/tests/unittests/test_directory_migration.py
+11
-2
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
...on/paddle/fluid/tests/unittests/test_imperative_deepcf.py
+108
-100
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
+1
-0
python/paddle/fluid/tests/unittests/test_input_spec.py
python/paddle/fluid/tests/unittests/test_input_spec.py
+11
-3
python/paddle/fluid/tests/unittests/test_layout_autotune.py
python/paddle/fluid/tests/unittests/test_layout_autotune.py
+6
-5
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+15
-6
python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
...paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
+14
-4
未找到文件。
python/paddle/fluid/tests/unittests/test_directory_migration.py
浏览文件 @
95f66c26
...
...
@@ -17,14 +17,22 @@ from __future__ import print_function
import
os
import
sys
import
time
import
tempfile
import
subprocess
import
unittest
import
numpy
as
np
import
paddle
class
TestDirectory
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
get_import_command
(
self
,
module
):
paths
=
module
.
split
(
'.'
)
if
len
(
paths
)
==
1
:
...
...
@@ -77,7 +85,7 @@ class TestDirectory(unittest.TestCase):
'paddle.static.nn.spectral_norm'
,
'paddle.static.nn.embedding'
]
import_file
=
'run_import_modules.py'
import_file
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'run_import_modules.py'
)
with
open
(
import_file
,
"w"
)
as
wb
:
for
module
in
new_directory
:
...
...
@@ -137,7 +145,8 @@ class TestDirectory(unittest.TestCase):
'paddle.declarative.spectral_norm'
,
'paddle.declarative.embedding'
]
import_file
=
'run_old_import_modules.py'
import_file
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'run_old_import_modules.py'
)
with
open
(
import_file
,
"w"
)
as
wb
:
cmd_context_count
=
"""
...
...
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
浏览文件 @
95f66c26
...
...
@@ -26,13 +26,6 @@ from paddle.fluid.dygraph.base import to_variable
from
paddle.fluid.dygraph
import
Linear
from
paddle.fluid.framework
import
_test_eager_guard
# Can use Amusic dataset as the DeepCF describes.
DATA_PATH
=
os
.
environ
.
get
(
'DATA_PATH'
,
''
)
BATCH_SIZE
=
int
(
os
.
environ
.
get
(
'BATCH_SIZE'
,
128
))
NUM_BATCHES
=
int
(
os
.
environ
.
get
(
'NUM_BATCHES'
,
5
))
NUM_EPOCHES
=
int
(
os
.
environ
.
get
(
'NUM_EPOCHES'
,
1
))
class
DMF
(
fluid
.
Layer
):
...
...
@@ -129,84 +122,90 @@ class DeepCF(fluid.Layer):
return
prediction
def
get_data
():
user_ids
=
[]
item_ids
=
[]
labels
=
[]
NUM_USERS
=
100
NUM_ITEMS
=
1000
matrix
=
np
.
zeros
([
NUM_USERS
,
NUM_ITEMS
],
dtype
=
np
.
float32
)
class
TestDygraphDeepCF
(
unittest
.
TestCase
):
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
label
=
float
(
random
.
randint
(
1
,
6
)
==
1
)
def
setUp
(
self
):
# Can use Amusic dataset as the DeepCF describes.
self
.
data_path
=
os
.
environ
.
get
(
'DATA_PATH'
,
''
)
self
.
batch_size
=
int
(
os
.
environ
.
get
(
'BATCH_SIZE'
,
128
))
self
.
num_batches
=
int
(
os
.
environ
.
get
(
'NUM_BATCHES'
,
5
))
self
.
num_epoches
=
int
(
os
.
environ
.
get
(
'NUM_EPOCHES'
,
1
))
def
get_data
(
self
):
user_ids
=
[]
item_ids
=
[]
labels
=
[]
NUM_USERS
=
100
NUM_ITEMS
=
1000
matrix
=
np
.
zeros
([
NUM_USERS
,
NUM_ITEMS
],
dtype
=
np
.
float32
)
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
label
=
float
(
random
.
randint
(
1
,
6
)
==
1
)
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
matrix
[
uid
,
iid
]
=
label
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
NUM_USERS
,
NUM_ITEMS
,
matrix
def
load_data
(
self
):
sys
.
stderr
.
write
(
'loading from %s
\n
'
%
self
.
data_path
)
likes
=
dict
()
num_users
=
-
1
num_items
=
-
1
with
open
(
self
.
data_path
,
'r'
)
as
f
:
for
l
in
f
.
readlines
():
uid
,
iid
,
rating
=
[
int
(
v
)
for
v
in
l
.
split
(
'
\t
'
)]
num_users
=
max
(
num_users
,
uid
+
1
)
num_items
=
max
(
num_items
,
iid
+
1
)
if
float
(
rating
)
>
0.0
:
likes
[(
uid
,
iid
)]
=
1.0
user_ids
=
[]
item_ids
=
[]
labels
=
[]
matrix
=
np
.
zeros
([
num_users
,
num_items
],
dtype
=
np
.
float32
)
for
uid
,
iid
in
likes
.
keys
():
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
matrix
[
uid
,
iid
]
=
label
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
NUM_USERS
,
NUM_ITEMS
,
matrix
def
load_data
(
DATA_PATH
):
sys
.
stderr
.
write
(
'loading from %s
\n
'
%
DATA_PATH
)
likes
=
dict
()
num_users
=
-
1
num_items
=
-
1
with
open
(
DATA_PATH
,
'r'
)
as
f
:
for
l
in
f
.
readlines
():
uid
,
iid
,
rating
=
[
int
(
v
)
for
v
in
l
.
split
(
'
\t
'
)]
num_users
=
max
(
num_users
,
uid
+
1
)
num_items
=
max
(
num_items
,
iid
+
1
)
if
float
(
rating
)
>
0.0
:
likes
[(
uid
,
iid
)]
=
1.0
user_ids
=
[]
item_ids
=
[]
labels
=
[]
matrix
=
np
.
zeros
([
num_users
,
num_items
],
dtype
=
np
.
float32
)
for
uid
,
iid
in
likes
.
keys
():
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
1.0
)
matrix
[
uid
,
iid
]
=
1.0
negative
=
0
while
negative
<
3
:
nuid
=
random
.
randint
(
0
,
num_users
-
1
)
niid
=
random
.
randint
(
0
,
num_items
-
1
)
if
(
nuid
,
niid
)
not
in
likes
:
negative
+=
1
user_ids
.
append
(
nuid
)
item_ids
.
append
(
niid
)
labels
.
append
(
0.0
)
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
num_users
,
num_items
,
matrix
class
TestDygraphDeepCF
(
unittest
.
TestCase
):
labels
.
append
(
1.0
)
matrix
[
uid
,
iid
]
=
1.0
negative
=
0
while
negative
<
3
:
nuid
=
random
.
randint
(
0
,
num_users
-
1
)
niid
=
random
.
randint
(
0
,
num_items
-
1
)
if
(
nuid
,
niid
)
not
in
likes
:
negative
+=
1
user_ids
.
append
(
nuid
)
item_ids
.
append
(
niid
)
labels
.
append
(
0.0
)
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
num_users
,
num_items
,
matrix
def
test_deefcf
(
self
):
seed
=
90
if
DATA_PATH
:
if
self
.
data_path
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
load_data
(
DATA_PATH
)
matrix
)
=
self
.
load_data
(
)
else
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
get_data
()
matrix
)
=
self
.
get_data
()
paddle
.
seed
(
seed
)
paddle
.
framework
.
random
.
_manual_program_seed
(
seed
)
startup
=
fluid
.
Program
()
...
...
@@ -228,17 +227,19 @@ class TestDygraphDeepCF(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
startup
)
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
static_loss
=
exe
.
run
(
main
,
feed
=
{
users
.
name
:
users_np
[
slice
:
slice
+
BATCH_SIZE
],
items
.
name
:
items_np
[
slice
:
slice
+
BATCH_SIZE
],
labels
.
name
:
labels_np
[
slice
:
slice
+
BATCH_SIZE
]
users
.
name
:
users_np
[
slice
:
slice
+
self
.
batch_size
],
items
.
name
:
items_np
[
slice
:
slice
+
self
.
batch_size
],
labels
.
name
:
labels_np
[
slice
:
slice
+
self
.
batch_size
]
},
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
...
...
@@ -250,18 +251,20 @@ class TestDygraphDeepCF(unittest.TestCase):
deepcf
=
DeepCF
(
num_users
,
num_items
,
matrix
)
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
,
parameter_list
=
deepcf
.
parameters
())
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
to_variable
(
users_np
[
slice
:
slice
+
self
.
batch_size
]),
to_variable
(
items_np
[
slice
:
slice
+
self
.
batch_size
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
to_variable
(
labels_np
[
slice
:
slice
+
self
.
batch_size
])))
loss
.
backward
()
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
...
...
@@ -276,18 +279,20 @@ class TestDygraphDeepCF(unittest.TestCase):
adam2
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
,
parameter_list
=
deepcf2
.
parameters
())
fluid
.
set_flags
({
'FLAGS_sort_sum_gradient'
:
True
})
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
prediction2
=
deepcf2
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
to_variable
(
users_np
[
slice
:
slice
+
self
.
batch_size
]),
to_variable
(
items_np
[
slice
:
slice
+
self
.
batch_size
]))
loss2
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction2
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
to_variable
(
labels_np
[
slice
:
slice
+
self
.
batch_size
])))
loss2
.
backward
()
adam2
.
minimize
(
loss2
)
deepcf2
.
clear_gradients
()
...
...
@@ -306,19 +311,22 @@ class TestDygraphDeepCF(unittest.TestCase):
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
,
parameter_list
=
deepcf
.
parameters
())
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
to_variable
(
users_np
[
slice
:
slice
+
self
.
batch_size
]),
to_variable
(
items_np
[
slice
:
slice
+
self
.
batch_size
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
self
.
batch_size
])))
loss
.
backward
()
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
...
...
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
浏览文件 @
95f66c26
...
...
@@ -177,4 +177,5 @@ class TestDygraphGNN(unittest.TestCase):
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_input_spec.py
浏览文件 @
95f66c26
...
...
@@ -12,8 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
tempfile
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.static
import
InputSpec
...
...
@@ -160,6 +163,10 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
self
.
out_num
=
16
self
.
x_spec
=
paddle
.
static
.
InputSpec
([
-
1
,
16
],
name
=
'x'
)
self
.
x
=
paddle
.
randn
([
4
,
16
])
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
@
classmethod
def
setUpClass
(
cls
):
...
...
@@ -182,7 +189,7 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
self
.
check_result
(
specs
,
'list'
)
def
check_result
(
self
,
specs
,
path
):
path
=
'./net_non_tensor_'
+
path
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./net_non_tensor_'
,
path
)
net
=
NetWithNonTensorSpec
(
self
.
in_num
,
self
.
out_num
)
net
.
eval
()
...
...
@@ -218,7 +225,7 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
specs
)
net
.
eval
()
path
=
'./net_twice'
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./net_twice'
)
# NOTE: check input_specs_compatible
new_specs
=
[
self
.
x_spec
,
True
,
"bn"
,
10
]
...
...
@@ -264,6 +271,7 @@ class TestNetWithNonTensorSpecWithPrune(unittest.TestCase):
self
.
y_spec
=
paddle
.
static
.
InputSpec
([
16
],
name
=
'y'
)
self
.
x
=
paddle
.
randn
([
4
,
16
])
self
.
y
=
paddle
.
randn
([
16
])
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
@
classmethod
def
setUpClass
(
cls
):
...
...
@@ -271,7 +279,7 @@ class TestNetWithNonTensorSpecWithPrune(unittest.TestCase):
def
test_non_tensor_with_prune
(
self
):
specs
=
[
self
.
x_spec
,
self
.
y_spec
,
True
]
path
=
'./net_non_tensor_prune_'
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./net_non_tensor_prune_'
)
net
=
NetWithNonTensorSpecPrune
(
self
.
in_num
,
self
.
out_num
)
net
.
eval
()
...
...
python/paddle/fluid/tests/unittests/test_layout_autotune.py
浏览文件 @
95f66c26
...
...
@@ -12,14 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
os
import
json
import
tempfile
import
unittest
import
warnings
import
numpy
import
paddle
import
paddle.nn.functional
as
F
import
tempfile
import
warnings
import
json
import
os
from
paddle.fluid.framework
import
_enable_legacy_dygraph
_enable_legacy_dygraph
()
...
...
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
95f66c26
...
...
@@ -14,6 +14,8 @@
from
__future__
import
print_function
import
os
import
tempfile
import
unittest
import
paddle.fluid
as
fluid
...
...
@@ -29,8 +31,6 @@ import paddle
from
paddle.io
import
Dataset
import
numpy
paddle
.
enable_static
()
class
TestOptimizer
(
unittest
.
TestCase
):
...
...
@@ -1279,6 +1279,12 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
Master weights will be saved by optimizer::state_dict.
'''
def
setUp
(
self
):
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
check_with_opt_state_dict
(
self
,
use_save_load
=
True
):
paddle
.
seed
(
100
)
numpy
.
random
.
seed
(
100
)
...
...
@@ -1340,10 +1346,12 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
optimizer
.
clear_grad
(
set_to_zero
=
False
)
if
use_save_load
and
i
==
5
:
paddle
.
save
(
model
.
state_dict
(),
"model.pdparams"
)
paddle
.
save
(
optimizer
.
state_dict
(),
"opt.pdopt"
)
model
.
set_state_dict
(
paddle
.
load
(
"model.pdparams"
))
optimizer
.
set_state_dict
(
paddle
.
load
(
"opt.pdopt"
))
model_path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
"model.pdparams"
)
optimizer_path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
"opt.pdopt"
)
paddle
.
save
(
model
.
state_dict
(),
model_path
)
paddle
.
save
(
optimizer
.
state_dict
(),
optimizer_path
)
model
.
set_state_dict
(
paddle
.
load
(
model_path
))
optimizer
.
set_state_dict
(
paddle
.
load
(
optimizer_path
))
return
loss
.
numpy
()
...
...
@@ -1359,4 +1367,5 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
浏览文件 @
95f66c26
...
...
@@ -13,12 +13,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
as
np
import
tempfile
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
unittest
import
paddle.nn
as
nn
import
os
class
SimpleFCLayer
(
nn
.
Layer
):
...
...
@@ -54,6 +56,10 @@ class TestTracedLayerErrMsg(unittest.TestCase):
self
.
fc_size
=
2
self
.
layer
=
self
.
_train_simple_net
()
self
.
type_str
=
'class'
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
test_trace_err
(
self
):
if
fluid
.
framework
.
in_dygraph_mode
():
...
...
@@ -122,7 +128,7 @@ class TestTracedLayerErrMsg(unittest.TestCase):
dygraph_out
,
traced_layer
=
fluid
.
dygraph
.
TracedLayer
.
trace
(
self
.
layer
,
[
in_x
])
path
=
'./traced_layer_err_msg'
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./traced_layer_err_msg'
)
with
self
.
assertRaises
(
TypeError
)
as
e
:
traced_layer
.
save_inference_model
([
0
])
self
.
assertEqual
(
...
...
@@ -193,11 +199,15 @@ class TestTracedLayerSaveInferenceModel(unittest.TestCase):
"""test save_inference_model will automaticlly create non-exist dir"""
def
setUp
(
self
):
self
.
save_path
=
"./nonexist_dir/fc"
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
self
.
save_path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
"./nonexist_dir/fc"
)
import
shutil
if
os
.
path
.
exists
(
os
.
path
.
dirname
(
self
.
save_path
)):
shutil
.
rmtree
(
os
.
path
.
dirname
(
self
.
save_path
))
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
test_mkdir_when_input_path_non_exist
(
self
):
if
fluid
.
framework
.
in_dygraph_mode
():
return
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录