fused_dropout_helper.h 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/dropout_impl_util.h"
#include "paddle/fluid/operators/fused/fused_dropout_act_bias.h"
#include "paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h"
#include "paddle/fluid/operators/fused/fused_residual_dropout_bias.h"
22
#include "paddle/phi/kernels/funcs/functors.h"
23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

/**
 * Support two Dropouts in the use senarieo.
 * This warpper can be used in FFN op.
 * The DropoutParam will be used in the fused_dropout_act_bias,
 * fused_residual_dropout_bias(pre_layer_norm=ture) or
 * fused_layernorm_residual_dropout_bias(pre_layer_norm=false).
33
 */
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
struct DropoutParam {
  uint64_t seed;
  float dropout_prob;
  bool is_upscale_in_train;
  bool is_test;
  bool fix_seed;
  int increment;
  const framework::Tensor* tensor_seed;
  int seed_val;

  DropoutParam() {
    fix_seed = false;
    seed = 0;
    is_test = false;
    is_upscale_in_train = false;
    dropout_prob = 0.5;
    tensor_seed = nullptr;
    seed_val = 0;
  }

54 55 56 57 58 59 60
  DropoutParam(bool fix_seed_,
               uint64_t seed_,
               bool is_test_,
               bool is_upscale_in_train_,
               float dropout_prob_,
               const framework::Tensor* tensor_seed_,
               int seed_val_) {
61 62 63 64 65 66 67 68 69
    fix_seed = fix_seed_;
    seed = seed_;
    is_test = is_test_;
    is_upscale_in_train = is_upscale_in_train_;
    dropout_prob = dropout_prob_;
    tensor_seed = tensor_seed_;
    seed_val = seed_val_;
  }

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  /**
   * dropout_index: can be 0, 1, 2. 0 means there is only one dropout,
   * 1 and 2 represent two dropout, the parameter name of dropout
   * will be "dropout" + dropout_index + param name, such as dropout1_seed,
   * dropout1_is_test.
   */
  DropoutParam(const framework::ExecutionContext& context,
               const int dropout_index) {
    std::string pre_fix = "dropout";
    std::string str_index = std::to_string(dropout_index);
    if (dropout_index > 0) {
      pre_fix = pre_fix + str_index + "_";
    } else {
      pre_fix = pre_fix + "_";
    }
L
Li Min 已提交
85
    dropout_prob = context.Attr<float>(pre_fix + "rate");
86 87 88
    auto& dropout_implementation =
        context.Attr<std::string>(pre_fix + "implementation");
    is_upscale_in_train = (dropout_implementation == "upscale_in_train");
L
Li Min 已提交
89
    is_test = context.Attr<bool>("is_test");
90 91 92 93 94 95 96 97 98 99 100 101 102
    fix_seed = context.Attr<bool>(pre_fix + "fix_seed");

    std::string str_seed = "Dropout";
    if (dropout_index > 0) {
      str_seed = str_seed + str_index + "Seed";
    } else {
      str_seed = str_seed + "Seed";
    }
    tensor_seed =
        context.HasInput(str_seed) ? context.Input<Tensor>(str_seed) : nullptr;
    seed_val = context.Attr<int>(pre_fix + "seed");
  }

L
Leo Chen 已提交
103
  int UpdateSeedAndIncrement(const phi::GPUContext& ctx, const int offset) {
104
    uint64_t tmp_increment;
105 106
    GetSeedDataAndIncrement(
        ctx, tensor_seed, fix_seed, seed_val, offset, &seed, &tmp_increment);
107 108 109 110 111
    increment = static_cast<int>(tmp_increment);
    return increment;
  }
};

112 113 114 115
template <typename T,
          typename MaskType,
          typename InType = T,
          typename OutType = T>
116 117
class FusedDropoutHelper {
 private:
L
Leo Chen 已提交
118
  int GetIncrement(const phi::GPUContext& ctx) {
119 120
    const int VecSize = MAX_CACHE_BYTES / sizeof(T);
    const int real_vec_size = cols_ % VecSize == 0 ? VecSize : 1;
121 122 123 124
    auto config = Get1DBlocksAnd2DGrids(ctx,
                                        static_cast<uint64_t>(rows_),
                                        static_cast<uint64_t>(cols_),
                                        real_vec_size);
125 126 127 128 129 130 131 132 133 134
    int increment = ((cols_ - 1) / (config.thread_per_block.x *
                                    config.block_per_grid.x * real_vec_size) +
                     1) *
                    real_vec_size;
    increment = dropout_param_.UpdateSeedAndIncrement(ctx, increment);
    return increment;
  }

 public:
  FusedDropoutHelper() {}
L
Leo Chen 已提交
135
  FusedDropoutHelper(const phi::GPUContext& ctx,
136 137 138
                     const int rows,
                     const int cols,
                     const DropoutParam& dropout_param) {
139 140 141 142 143 144
    rows_ = rows;
    cols_ = cols;
    dropout_param_ = dropout_param;
  }

  // out = residual + dropout( src + bias )
L
Leo Chen 已提交
145
  void ResidualDropoutBias(const phi::GPUContext& ctx,
146
                           const InType* src,
147 148
                           const T* residual,
                           const T* bias,
149 150 151 152 153 154
                           OutType* out,
                           MaskType* mask,
                           const float quant_last_in_scale = 1.0,
                           const float* dequant_out_scale_data = nullptr,
                           const int quant_out_scale_offset = 0,
                           const float quant_next_in_scale = 1.0) {
155
    auto increment = GetIncrement(ctx);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    LaunchResidualDropoutBias<T, MaskType, InType, OutType>(
        rows_,
        cols_,
        increment,
        dropout_param_.seed,
        dropout_param_.dropout_prob,
        dropout_param_.is_test,
        dropout_param_.is_upscale_in_train,
        src,
        residual,
        bias,
        mask,
        out,
        ctx,
        quant_last_in_scale,
        dequant_out_scale_data,
        quant_out_scale_offset,
        quant_next_in_scale);
174 175
  }

L
Leo Chen 已提交
176
  void ResidualDropoutBiasGrad(const phi::GPUContext& ctx,
177 178 179 180 181
                               const T* d_out,
                               const MaskType* mask,
                               T* d_src,
                               T* d_residual,
                               T* d_bias) {
182
    LaunchResidualDropoutBiasGrad<T, uint8_t>(
183 184 185 186 187 188 189 190 191
        d_out,
        mask,
        dropout_param_.dropout_prob,
        dropout_param_.is_upscale_in_train,
        rows_,
        cols_,
        d_src,
        d_bias,
        ctx);
192
    if (d_residual) {
193 194 195 196 197 198
      memory::Copy(ctx.GetPlace(),
                   d_residual,
                   ctx.GetPlace(),
                   d_out,
                   rows_ * cols_ * sizeof(T),
                   ctx.stream());
199
    }
200 201 202
  }

  // out = dropout(activation(src + bias))
L
Leo Chen 已提交
203
  void DropoutActBias(const phi::GPUContext& ctx,
204
                      const InType* src,
205 206
                      const T* bias,
                      const std::string& act_method,
207 208 209 210 211 212 213 214 215
                      OutType* out,
                      MaskType* mask,
                      const float quant_last_in_scale = 1.0,
                      const float* dequant_out_scale_data = nullptr,
                      const int quant_out_scale_offset = 0,
                      const float quant_next_in_scale = 1.0,
                      const int quant_round_type = 1,
                      const float quant_max_bound = 127.0,
                      const float quant_min_bound = -127.0) {
216 217 218
    auto increment = GetIncrement(ctx);
    if (act_method == "gelu") {
      GeluFunctor<T> gelu;
219
      LaunchDropoutActBias<T, MaskType, GeluFunctor<T>, InType, OutType>(
220 221 222 223 224 225 226 227 228 229 230 231
          gelu,
          dropout_param_.seed,
          rows_,
          cols_,
          dropout_param_.increment,
          dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train,
          dropout_param_.is_test,
          src,
          bias,
          out,
          mask,
232 233 234 235 236 237 238 239
          ctx,
          quant_last_in_scale,
          dequant_out_scale_data,
          quant_out_scale_offset,
          quant_next_in_scale,
          quant_round_type,
          quant_max_bound,
          quant_min_bound);
240
    } else if (act_method == "relu") {
241
      phi::funcs::ReluFunctor<T> relu;
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      LaunchDropoutActBias<T,
                           MaskType,
                           phi::funcs::ReluFunctor<T>,
                           InType,
                           OutType>(relu,
                                    dropout_param_.seed,
                                    rows_,
                                    cols_,
                                    increment,
                                    dropout_param_.dropout_prob,
                                    dropout_param_.is_upscale_in_train,
                                    dropout_param_.is_test,
                                    src,
                                    bias,
                                    out,
                                    mask,
                                    ctx,
                                    quant_last_in_scale,
                                    dequant_out_scale_data,
                                    quant_out_scale_offset,
                                    quant_next_in_scale,
                                    quant_round_type,
                                    quant_max_bound,
                                    quant_min_bound);
266 267 268 269 270 271
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently only supports gelu or relu activation functions!"));
    }
  }

L
Leo Chen 已提交
272
  void DropoutActBiasGrad(const phi::GPUContext& ctx,
273 274 275 276 277 278 279
                          const T* dout,
                          const T* src,
                          const T* bias,
                          const MaskType* mask,
                          T* d_src,
                          T* d_bias,
                          const std::string& act_method) {
280 281 282
    if (act_method == "gelu") {
      GeluGradFunctor<T> gelu_grad;
      LaunchDropoutActBiasGrad<T, MaskType, GeluGradFunctor<T>>(
283 284 285 286 287 288 289 290 291 292 293 294
          gelu_grad,
          dout,
          mask,
          src,
          bias,
          dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train,
          rows_,
          cols_,
          d_src,
          d_bias,
          ctx);
295
    } else if (act_method == "relu") {
296 297
      phi::funcs::ReluGradFunctor<T> relu_grad;
      LaunchDropoutActBiasGrad<T, MaskType, phi::funcs::ReluGradFunctor<T>>(
298 299 300 301 302 303 304 305 306 307 308 309
          relu_grad,
          dout,
          mask,
          src,
          bias,
          dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train,
          rows_,
          cols_,
          d_src,
          d_bias,
          ctx);
310 311 312 313 314 315 316 317 318 319 320 321
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently only supports gelu or relu activation functions!"));
    }
  }

 protected:
  int rows_;
  int cols_;
  DropoutParam dropout_param_;
};

322 323 324 325 326 327
template <typename T,
          typename MaskType,
          typename InType = T,
          typename OutType = T>
class FusedDropoutLayerNormHelper
    : public FusedDropoutHelper<T, MaskType, InType, OutType> {
328 329
 public:
  FusedDropoutLayerNormHelper() {}
330 331
  FusedDropoutLayerNormHelper(const int rows,
                              const int cols,
332 333 334 335 336 337 338
                              const float epsilon) {
    using U = LayerNormParamType<T>;
    this->rows_ = rows;
    this->cols_ = cols;
    epsilon_ = epsilon;
  }

L
Leo Chen 已提交
339
  FusedDropoutLayerNormHelper(const phi::GPUContext& ctx,
340 341
                              const int rows,
                              const int cols,
342 343
                              const DropoutParam& dropout_param,
                              const float epsilon)
344 345
      : FusedDropoutHelper<T, MaskType, InType, OutType>(
            ctx, rows, cols, dropout_param) {
346 347 348 349 350
    using U = LayerNormParamType<T>;
    epsilon_ = epsilon;
  }

  // call layer_norm
L
Leo Chen 已提交
351
  void LayerNorm(const phi::GPUContext& ctx,
352
                 const InType* src,
353
                 const LayerNormParamType<T>* gamma,
354
                 const LayerNormParamType<T>* beta,
355
                 OutType* out,
356 357
                 LayerNormParamType<T>* mean,
                 LayerNormParamType<T>* variance) {
358 359 360
    using U = LayerNormParamType<T>;
    switch (GetDesiredBlockDim(this->cols_)) {
      FIXED_BLOCK_DIM_CASE(
361
          LayerNormForward<T, U, kBlockDim, false, InType, OutType>
362
          <<<this->rows_, kBlockDim, 0, ctx.stream()>>>(
363 364 365 366
              src, gamma, beta, out, mean, variance, epsilon_, this->cols_));
    }
  }

L
Leo Chen 已提交
367
  void LayerNormGrad(const phi::GPUContext& ctx,
368 369 370
                     const T* dout,
                     const T* src,
                     const LayerNormParamType<T>* gamma,
371
                     const LayerNormParamType<T>* mean,
372 373
                     const LayerNormParamType<T>* variance,
                     T* d_src,
374 375 376
                     LayerNormParamType<T>* d_scale,
                     LayerNormParamType<T>* d_bias) {
    using U = LayerNormParamType<T>;
377 378 379 380 381 382 383 384 385 386 387 388
    LayerNormBackward<T, U>(src,
                            dout,
                            gamma,
                            mean,
                            variance,
                            d_src,
                            d_scale,
                            d_bias,
                            epsilon_,
                            this->rows_,
                            this->cols_,
                            ctx);
389 390 391
  }

  // out = layernorm(residual + dropout(src + bias))
392
  template <typename P = LayerNormParamType<T>, bool is_same_type = false>
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
  void LayernormResidualDropoutBias(
      const phi::GPUContext& ctx,
      const InType* src,
      const T* residual,
      const T* bias,
      const P* gamma,
      const P* beta,
      T* dropout_out,
      MaskType* mask,
      OutType* out,
      LayerNormParamType<T>* mean,
      LayerNormParamType<T>* variance,
      const float quant_last_in_scale = 1.0,
      const float* dequant_out_scale_data = nullptr,
      const int quant_out_scale_offset = 0,
      const float quant_next_in_scale = 1.0,
      const int quant_round_type = 1,
      const float quant_max_bound = 127.0,
      const float quant_min_bound = -127.0) {
412 413 414 415 416 417 418 419
    using U = LayerNormParamType<T>;
    int vec_size = MAX_CACHE_BYTES / sizeof(T);
    if (this->cols_ % vec_size != 0) {
      vec_size = 1;
    }
    int threads = GetDesiredBlockDim(this->cols_ / vec_size);
    int increment = ((this->cols_ - 1) / (threads * vec_size) + 1) * vec_size;
    increment = this->dropout_param_.UpdateSeedAndIncrement(ctx, increment);
420 421 422 423 424 425
    LaunchLayernormResidualDropoutBias<T,
                                       MaskType,
                                       U,
                                       is_same_type,
                                       InType,
                                       OutType>(
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        this->rows_,
        this->cols_,
        increment,
        this->dropout_param_.seed,
        this->dropout_param_.dropout_prob,
        epsilon_,
        this->dropout_param_.is_upscale_in_train,
        this->dropout_param_.is_test,
        src,
        residual,
        bias,
        gamma,
        beta,
        mask,
        dropout_out,
        out,
        mean,
        variance,
444 445 446 447 448 449 450 451
        ctx,
        quant_last_in_scale,
        dequant_out_scale_data,
        quant_out_scale_offset,
        quant_next_in_scale,
        quant_round_type,
        quant_max_bound,
        quant_min_bound);
452 453
  }

454
  template <typename P = LayerNormParamType<T>, bool is_same_type = false>
L
Leo Chen 已提交
455
  void LayernormResidualDropoutBiasGrad(const phi::GPUContext& ctx,
456 457 458 459
                                        const T* d_out,
                                        const T* layernorm_src,
                                        const MaskType* mask,
                                        const P* gamma,
460 461
                                        const LayerNormParamType<T>* mean,
                                        const LayerNormParamType<T>* variance,
462 463 464 465 466 467
                                        T* d_layernorm_src,
                                        P* d_scale,
                                        P* d_layernorm_bias,
                                        T* d_dropout_src,
                                        T* d_bias,
                                        T* d_residual) {
468
    using U = LayerNormParamType<T>;
469 470 471 472 473 474 475 476 477 478 479 480
    bool can_call_1024_kernel = false;
    // Fast impl for cases when cols is 1024 and linear_bias is nullptr.
    // In fact, linear_bias is not nullptr is also feasible for impl.
    // Here, we do not support it.
    if (this->cols_ == 1024 && d_bias == nullptr && d_scale != nullptr &&
        d_layernorm_bias != nullptr && sizeof(T) <= 4) {
      can_call_1024_kernel = true;
    }
    VLOG(6) << "LaunchLayernormResidualDropoutGrad = " << can_call_1024_kernel;

    if (can_call_1024_kernel) {
      LaunchLayernormResidualDropoutGrad<T, U, MaskType, is_same_type>(
481 482 483 484
          ctx,
          this->rows_,
          this->cols_,
          epsilon_,
485
          this->dropout_param_.dropout_prob,
486 487 488 489 490 491 492 493 494 495
          this->dropout_param_.is_upscale_in_train,
          d_out,
          layernorm_src,
          gamma,
          mean,
          variance,
          mask,
          d_scale,
          d_layernorm_bias,
          d_residual,
496 497
          d_dropout_src);
    } else {
498 499 500 501 502 503 504 505 506 507 508 509 510 511
      LayerNormBackward<T, U, is_same_type>(layernorm_src,
                                            d_out,
                                            gamma,
                                            mean,
                                            variance,
                                            d_layernorm_src,
                                            d_scale,
                                            d_layernorm_bias,
                                            epsilon_,
                                            this->rows_,
                                            this->cols_,
                                            ctx);
      this->ResidualDropoutBiasGrad(
          ctx, d_layernorm_src, mask, d_dropout_src, d_residual, d_bias);
512
    }
513 514 515 516 517 518 519 520
  }

 protected:
  float epsilon_;
};

}  // namespace operators
}  // namespace paddle