fused_dropout_helper.h 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/dropout_impl_util.h"
#include "paddle/fluid/operators/fused/fused_dropout_act_bias.h"
#include "paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h"
#include "paddle/fluid/operators/fused/fused_residual_dropout_bias.h"
22
#include "paddle/phi/kernels/funcs/functors.h"
23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

/**
 * Support two Dropouts in the use senarieo.
 * This warpper can be used in FFN op.
 * The DropoutParam will be used in the fused_dropout_act_bias,
 * fused_residual_dropout_bias(pre_layer_norm=ture) or
 * fused_layernorm_residual_dropout_bias(pre_layer_norm=false).
33
 */
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
struct DropoutParam {
  uint64_t seed;
  float dropout_prob;
  bool is_upscale_in_train;
  bool is_test;
  bool fix_seed;
  int increment;
  const framework::Tensor* tensor_seed;
  int seed_val;

  DropoutParam() {
    fix_seed = false;
    seed = 0;
    is_test = false;
    is_upscale_in_train = false;
    dropout_prob = 0.5;
    tensor_seed = nullptr;
    seed_val = 0;
  }

54 55 56 57 58 59 60
  DropoutParam(bool fix_seed_,
               uint64_t seed_,
               bool is_test_,
               bool is_upscale_in_train_,
               float dropout_prob_,
               const framework::Tensor* tensor_seed_,
               int seed_val_) {
61 62 63 64 65 66 67 68 69
    fix_seed = fix_seed_;
    seed = seed_;
    is_test = is_test_;
    is_upscale_in_train = is_upscale_in_train_;
    dropout_prob = dropout_prob_;
    tensor_seed = tensor_seed_;
    seed_val = seed_val_;
  }

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  /**
   * dropout_index: can be 0, 1, 2. 0 means there is only one dropout,
   * 1 and 2 represent two dropout, the parameter name of dropout
   * will be "dropout" + dropout_index + param name, such as dropout1_seed,
   * dropout1_is_test.
   */
  DropoutParam(const framework::ExecutionContext& context,
               const int dropout_index) {
    std::string pre_fix = "dropout";
    std::string str_index = std::to_string(dropout_index);
    if (dropout_index > 0) {
      pre_fix = pre_fix + str_index + "_";
    } else {
      pre_fix = pre_fix + "_";
    }
L
Li Min 已提交
85
    dropout_prob = context.Attr<float>(pre_fix + "rate");
86 87 88
    auto& dropout_implementation =
        context.Attr<std::string>(pre_fix + "implementation");
    is_upscale_in_train = (dropout_implementation == "upscale_in_train");
L
Li Min 已提交
89
    is_test = context.Attr<bool>("is_test");
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    fix_seed = context.Attr<bool>(pre_fix + "fix_seed");

    std::string str_seed = "Dropout";
    if (dropout_index > 0) {
      str_seed = str_seed + str_index + "Seed";
    } else {
      str_seed = str_seed + "Seed";
    }
    tensor_seed =
        context.HasInput(str_seed) ? context.Input<Tensor>(str_seed) : nullptr;
    seed_val = context.Attr<int>(pre_fix + "seed");
  }

  int UpdateSeedAndIncrement(const platform::CUDADeviceContext& ctx,
                             const int offset) {
    uint64_t tmp_increment;
106 107
    GetSeedDataAndIncrement(
        ctx, tensor_seed, fix_seed, seed_val, offset, &seed, &tmp_increment);
108 109 110 111 112 113 114 115 116 117 118
    increment = static_cast<int>(tmp_increment);
    return increment;
  }
};

template <typename T, typename MaskType>
class FusedDropoutHelper {
 private:
  int GetIncrement(const platform::CUDADeviceContext& ctx) {
    const int VecSize = MAX_CACHE_BYTES / sizeof(T);
    const int real_vec_size = cols_ % VecSize == 0 ? VecSize : 1;
119 120 121 122
    auto config = Get1DBlocksAnd2DGrids(ctx,
                                        static_cast<uint64_t>(rows_),
                                        static_cast<uint64_t>(cols_),
                                        real_vec_size);
123 124 125 126 127 128 129 130 131 132
    int increment = ((cols_ - 1) / (config.thread_per_block.x *
                                    config.block_per_grid.x * real_vec_size) +
                     1) *
                    real_vec_size;
    increment = dropout_param_.UpdateSeedAndIncrement(ctx, increment);
    return increment;
  }

 public:
  FusedDropoutHelper() {}
133 134 135 136
  FusedDropoutHelper(const platform::CUDADeviceContext& ctx,
                     const int rows,
                     const int cols,
                     const DropoutParam& dropout_param) {
137 138 139 140 141 142
    rows_ = rows;
    cols_ = cols;
    dropout_param_ = dropout_param;
  }

  // out = residual + dropout( src + bias )
143 144 145 146 147
  void ResidualDropoutBias(const platform::CUDADeviceContext& ctx,
                           const T* src,
                           const T* residual,
                           const T* bias,
                           T* out,
148 149
                           MaskType* mask) {
    auto increment = GetIncrement(ctx);
150 151 152 153 154 155 156 157 158 159 160 161 162
    LaunchResidualDropoutBias<T, MaskType>(rows_,
                                           cols_,
                                           increment,
                                           dropout_param_.seed,
                                           dropout_param_.dropout_prob,
                                           dropout_param_.is_test,
                                           dropout_param_.is_upscale_in_train,
                                           src,
                                           residual,
                                           bias,
                                           mask,
                                           out,
                                           ctx);
163 164 165
  }

  void ResidualDropoutBiasGrad(const platform::CUDADeviceContext& ctx,
166 167 168 169 170
                               const T* d_out,
                               const MaskType* mask,
                               T* d_src,
                               T* d_residual,
                               T* d_bias) {
171
    LaunchResidualDropoutBiasGrad<T, uint8_t>(
172 173 174 175 176 177 178 179 180
        d_out,
        mask,
        dropout_param_.dropout_prob,
        dropout_param_.is_upscale_in_train,
        rows_,
        cols_,
        d_src,
        d_bias,
        ctx);
181
    if (d_residual) {
182 183 184 185 186 187
      memory::Copy(ctx.GetPlace(),
                   d_residual,
                   ctx.GetPlace(),
                   d_out,
                   rows_ * cols_ * sizeof(T),
                   ctx.stream());
188
    }
189 190 191
  }

  // out = dropout(activation(src + bias))
192 193 194 195 196
  void DropoutActBias(const platform::CUDADeviceContext& ctx,
                      const T* src,
                      const T* bias,
                      const std::string& act_method,
                      T* out,
197 198 199 200 201
                      MaskType* mask) {
    auto increment = GetIncrement(ctx);
    if (act_method == "gelu") {
      GeluFunctor<T> gelu;
      LaunchDropoutActBias<T, MaskType, GeluFunctor<T>>(
202 203 204 205 206 207 208 209 210 211 212 213 214
          gelu,
          dropout_param_.seed,
          rows_,
          cols_,
          dropout_param_.increment,
          dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train,
          dropout_param_.is_test,
          src,
          bias,
          out,
          mask,
          ctx);
215
    } else if (act_method == "relu") {
216 217
      phi::funcs::ReluFunctor<T> relu;
      LaunchDropoutActBias<T, MaskType, phi::funcs::ReluFunctor<T>>(
218 219 220 221 222 223 224 225 226 227 228 229 230
          relu,
          dropout_param_.seed,
          rows_,
          cols_,
          increment,
          dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train,
          dropout_param_.is_test,
          src,
          bias,
          out,
          mask,
          ctx);
231 232 233 234 235 236
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently only supports gelu or relu activation functions!"));
    }
  }

237 238 239 240 241 242 243 244
  void DropoutActBiasGrad(const platform::CUDADeviceContext& ctx,
                          const T* dout,
                          const T* src,
                          const T* bias,
                          const MaskType* mask,
                          T* d_src,
                          T* d_bias,
                          const std::string& act_method) {
245 246 247
    if (act_method == "gelu") {
      GeluGradFunctor<T> gelu_grad;
      LaunchDropoutActBiasGrad<T, MaskType, GeluGradFunctor<T>>(
248 249 250 251 252 253 254 255 256 257 258 259
          gelu_grad,
          dout,
          mask,
          src,
          bias,
          dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train,
          rows_,
          cols_,
          d_src,
          d_bias,
          ctx);
260
    } else if (act_method == "relu") {
261 262
      phi::funcs::ReluGradFunctor<T> relu_grad;
      LaunchDropoutActBiasGrad<T, MaskType, phi::funcs::ReluGradFunctor<T>>(
263 264 265 266 267 268 269 270 271 272 273 274
          relu_grad,
          dout,
          mask,
          src,
          bias,
          dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train,
          rows_,
          cols_,
          d_src,
          d_bias,
          ctx);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently only supports gelu or relu activation functions!"));
    }
  }

 protected:
  int rows_;
  int cols_;
  DropoutParam dropout_param_;
};

template <typename T, typename MaskType>
class FusedDropoutLayerNormHelper : public FusedDropoutHelper<T, MaskType> {
 public:
  FusedDropoutLayerNormHelper() {}
291 292
  FusedDropoutLayerNormHelper(const int rows,
                              const int cols,
293 294 295 296 297 298 299 300
                              const float epsilon) {
    using U = LayerNormParamType<T>;
    this->rows_ = rows;
    this->cols_ = cols;
    epsilon_ = epsilon;
  }

  FusedDropoutLayerNormHelper(const platform::CUDADeviceContext& ctx,
301 302
                              const int rows,
                              const int cols,
303 304 305 306 307 308 309 310
                              const DropoutParam& dropout_param,
                              const float epsilon)
      : FusedDropoutHelper<T, MaskType>(ctx, rows, cols, dropout_param) {
    using U = LayerNormParamType<T>;
    epsilon_ = epsilon;
  }

  // call layer_norm
311 312
  void LayerNorm(const platform::CUDADeviceContext& ctx,
                 const T* src,
313
                 const LayerNormParamType<T>* gamma,
314 315 316 317
                 const LayerNormParamType<T>* beta,
                 T* out,
                 LayerNormParamType<T>* mean,
                 LayerNormParamType<T>* variance) {
318 319 320
    using U = LayerNormParamType<T>;
    switch (GetDesiredBlockDim(this->cols_)) {
      FIXED_BLOCK_DIM_CASE(
321 322
          LayerNormForward<T, U, kBlockDim>
          <<<this->rows_, kBlockDim, 0, ctx.stream()>>>(
323 324 325 326
              src, gamma, beta, out, mean, variance, epsilon_, this->cols_));
    }
  }

327 328 329 330
  void LayerNormGrad(const platform::CUDADeviceContext& ctx,
                     const T* dout,
                     const T* src,
                     const LayerNormParamType<T>* gamma,
331
                     const LayerNormParamType<T>* mean,
332 333
                     const LayerNormParamType<T>* variance,
                     T* d_src,
334 335 336
                     LayerNormParamType<T>* d_scale,
                     LayerNormParamType<T>* d_bias) {
    using U = LayerNormParamType<T>;
337 338 339 340 341 342 343 344 345 346 347 348
    LayerNormBackward<T, U>(src,
                            dout,
                            gamma,
                            mean,
                            variance,
                            d_src,
                            d_scale,
                            d_bias,
                            epsilon_,
                            this->rows_,
                            this->cols_,
                            ctx);
349 350 351
  }

  // out = layernorm(residual + dropout(src + bias))
352 353
  template <typename P = LayerNormParamType<T>, bool is_same_type = false>
  void LayernormResidualDropoutBias(const platform::CUDADeviceContext& ctx,
354 355 356 357 358 359 360 361
                                    const T* src,
                                    const T* residual,
                                    const T* bias,
                                    const P* gamma,
                                    const P* beta,
                                    T* dropout_out,
                                    MaskType* mask,
                                    T* out,
362 363
                                    LayerNormParamType<T>* mean,
                                    LayerNormParamType<T>* variance) {
364 365 366 367 368 369 370 371
    using U = LayerNormParamType<T>;
    int vec_size = MAX_CACHE_BYTES / sizeof(T);
    if (this->cols_ % vec_size != 0) {
      vec_size = 1;
    }
    int threads = GetDesiredBlockDim(this->cols_ / vec_size);
    int increment = ((this->cols_ - 1) / (threads * vec_size) + 1) * vec_size;
    increment = this->dropout_param_.UpdateSeedAndIncrement(ctx, increment);
372
    LaunchLayernormResidualDropoutBias<T, MaskType, U, is_same_type>(
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        this->rows_,
        this->cols_,
        increment,
        this->dropout_param_.seed,
        this->dropout_param_.dropout_prob,
        epsilon_,
        this->dropout_param_.is_upscale_in_train,
        this->dropout_param_.is_test,
        src,
        residual,
        bias,
        gamma,
        beta,
        mask,
        dropout_out,
        out,
        mean,
        variance,
        ctx);
392 393
  }

394 395
  template <typename P = LayerNormParamType<T>, bool is_same_type = false>
  void LayernormResidualDropoutBiasGrad(const platform::CUDADeviceContext& ctx,
396 397 398 399
                                        const T* d_out,
                                        const T* layernorm_src,
                                        const MaskType* mask,
                                        const P* gamma,
400 401
                                        const LayerNormParamType<T>* mean,
                                        const LayerNormParamType<T>* variance,
402 403 404 405 406 407
                                        T* d_layernorm_src,
                                        P* d_scale,
                                        P* d_layernorm_bias,
                                        T* d_dropout_src,
                                        T* d_bias,
                                        T* d_residual) {
408
    using U = LayerNormParamType<T>;
409 410 411 412 413 414 415 416 417 418 419 420
    bool can_call_1024_kernel = false;
    // Fast impl for cases when cols is 1024 and linear_bias is nullptr.
    // In fact, linear_bias is not nullptr is also feasible for impl.
    // Here, we do not support it.
    if (this->cols_ == 1024 && d_bias == nullptr && d_scale != nullptr &&
        d_layernorm_bias != nullptr && sizeof(T) <= 4) {
      can_call_1024_kernel = true;
    }
    VLOG(6) << "LaunchLayernormResidualDropoutGrad = " << can_call_1024_kernel;

    if (can_call_1024_kernel) {
      LaunchLayernormResidualDropoutGrad<T, U, MaskType, is_same_type>(
421 422 423 424
          ctx,
          this->rows_,
          this->cols_,
          epsilon_,
425
          this->dropout_param_.dropout_prob,
426 427 428 429 430 431 432 433 434 435
          this->dropout_param_.is_upscale_in_train,
          d_out,
          layernorm_src,
          gamma,
          mean,
          variance,
          mask,
          d_scale,
          d_layernorm_bias,
          d_residual,
436 437
          d_dropout_src);
    } else {
438 439 440 441 442 443 444 445 446 447 448 449 450 451
      LayerNormBackward<T, U, is_same_type>(layernorm_src,
                                            d_out,
                                            gamma,
                                            mean,
                                            variance,
                                            d_layernorm_src,
                                            d_scale,
                                            d_layernorm_bias,
                                            epsilon_,
                                            this->rows_,
                                            this->cols_,
                                            ctx);
      this->ResidualDropoutBiasGrad(
          ctx, d_layernorm_src, mask, d_dropout_src, d_residual, d_bias);
452
    }
453 454 455 456 457 458 459 460
  }

 protected:
  float epsilon_;
};

}  // namespace operators
}  // namespace paddle