miopen_desc.h 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>

#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/miopen_helper.h"

namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace platform {
using framework::Tensor;

template <typename T>
40
inline miopenDataType_t ToCudnnDataType(const T& t) {
41
  auto type = framework::ToDataType(t);
42
  return ToCudnnDataType(type);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
}

inline std::vector<int> TransformDimOrder(const std::vector<int>& dims) {
  std::vector<int> transformed_dims(dims.begin(), dims.end());
  int H, W, D, C;
  if (dims.size() == 4) {
    H = dims[1];
    W = dims[2];
    C = dims[3];
    transformed_dims[1] = C;
    transformed_dims[2] = H;
    transformed_dims[3] = W;
  } else {
    D = dims[1];
    H = dims[2];
    W = dims[3];
    C = dims[4];
    transformed_dims[1] = C;
    transformed_dims[2] = D;
    transformed_dims[3] = H;
    transformed_dims[4] = W;
  }
  return transformed_dims;
}

template <>
69
inline miopenDataType_t ToCudnnDataType(
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    const framework::proto::VarType::Type& t) {
  miopenDataType_t type = miopenFloat;
  switch (t) {
    case framework::proto::VarType::FP16:
      type = miopenHalf;
      break;
    case framework::proto::VarType::FP32:
      type = miopenFloat;
      break;
    default:
      break;
  }
  return type;
}

class ActivationDescriptor {
 public:
87 88 89 90 91 92 93 94 95 96
  using T = miopenActivationDescriptor;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::miopenDestroyActivationDescriptor(t));
        t = nullptr;
      }
    }
  };
97
  ActivationDescriptor() {
98
    T* raw_ptr;
99
    PADDLE_ENFORCE_CUDA_SUCCESS(
100 101
        dynload::miopenCreateActivationDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
102 103 104 105
  }
  template <typename T>
  void set(miopenActivationMode_t mode, const T& coef) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetActivationDescriptor(
106
        desc_.get(), mode, static_cast<double>(coef), 0.0, 0.0));
107 108
  }

109 110
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
111 112

 private:
113
  std::unique_ptr<T, Deleter> desc_;
114 115 116 117
};

class TensorDescriptor {
 public:
118 119 120 121 122 123 124 125 126
  using T = miopenTensorDescriptor;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroyTensorDescriptor(t));
        t = nullptr;
      }
    }
  };
127
  TensorDescriptor() {
128 129 130 131
    T* raw_ptr;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::miopenCreateTensorDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
132
  }
133 134
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
135 136 137 138 139 140 141 142 143 144 145 146 147

  void set(const Tensor& tensor, const int groups = 1) {
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetTensorDescriptor(
148
        (miopenTensorDescriptor_t)(desc_.get()), ToCudnnDataType(tensor.type()),
149 150 151 152 153 154 155
        static_cast<int>(dims_with_group.size()),
        const_cast<int*>(dims_with_group.data()),
        const_cast<int*>(strides.data())));
  }

  void set(const Tensor& tensor, const miopenTensorFormat_t format) {
    const int groups = 1;
156 157 158
    PADDLE_ENFORCE_EQ(format, MIOPEN_TENSOR_NCHW,
                      platform::errors::InvalidArgument(
                          "format should ONLY be NCHW in MIOPEN."));
159 160 161 162 163 164 165 166 167 168 169
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetTensorDescriptor(
170
        (miopenTensorDescriptor_t)(desc_.get()), ToCudnnDataType(tensor.type()),
171 172 173 174 175 176
        static_cast<int>(dims_with_group.size()),
        const_cast<int*>(dims_with_group.data()),
        const_cast<int*>(strides.data())));
  }

 private:
177
  std::unique_ptr<T, Deleter> desc_;
178 179 180 181
};

class FilterDescriptor {
 public:
182 183 184 185 186 187 188 189 190
  using T = miopenTensorDescriptor;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroyTensorDescriptor(t));
        t = nullptr;
      }
    }
  };
191
  FilterDescriptor() {
192 193 194 195
    T* raw_ptr;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::miopenCreateTensorDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
196
  }
197 198
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
199 200 201 202 203 204

  void set(const Tensor& tensor, const miopenTensorFormat_t format,
           const int groups = 1) {
    PADDLE_ENFORCE_EQ(format, MIOPEN_TENSOR_NCHW,
                      platform::errors::InvalidArgument(
                          "format should ONLY be NCHW in MIOPEN."));
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetTensorDescriptor(
        (miopenTensorDescriptor_t)(desc_.get()), ToCudnnDataType(tensor.type()),
        static_cast<int>(dims_with_group.size()),
        const_cast<int*>(dims_with_group.data()),
        const_cast<int*>(strides.data())));
220 221 222
  }

 private:
223
  std::unique_ptr<T, Deleter> desc_;
224 225 226 227
};

class ConvolutionDescriptor {
 public:
228 229 230 231 232 233 234 235 236 237
  using T = miopenConvolutionDescriptor;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::miopenDestroyConvolutionDescriptor(t));
        t = nullptr;
      }
    }
  };
238
  ConvolutionDescriptor() {
239
    T* raw_ptr;
240
    PADDLE_ENFORCE_CUDA_SUCCESS(
241 242
        dynload::miopenCreateConvolutionDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
243
  }
244 245
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
246 247 248 249 250

  void set(miopenDataType_t dtype, const std::vector<int>& pads,
           const std::vector<int>& strides, const std::vector<int>& dilations,
           bool allow_tf32, const int groups = 1) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenInitConvolutionNdDescriptor(
251 252
        (miopenConvolutionDescriptor_t)desc_.get(),
        static_cast<int>(pads.size()), const_cast<int*>(pads.data()),
253 254 255
        const_cast<int*>(strides.data()), const_cast<int*>(dilations.data()),
        miopenConvolution));
    PADDLE_ENFORCE_CUDA_SUCCESS(
256 257
        platform::dynload::miopenSetConvolutionGroupCount(
            (miopenConvolutionDescriptor_t)desc_.get(), groups));
258 259 260
  }

 private:
261
  std::unique_ptr<T, Deleter> desc_;
262 263 264 265
};

}  // namespace platform
}  // namespace paddle