miopen_desc.h 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>

#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/miopen_helper.h"

namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace platform {
using framework::Tensor;

template <typename T>
inline miopenDataType_t ToMIOpenDataType(const T& t) {
  auto type = framework::ToDataType(t);
  return ToMIOpenDataType(type);
}

inline std::vector<int> TransformDimOrder(const std::vector<int>& dims) {
  std::vector<int> transformed_dims(dims.begin(), dims.end());
  int H, W, D, C;
  if (dims.size() == 4) {
    H = dims[1];
    W = dims[2];
    C = dims[3];
    transformed_dims[1] = C;
    transformed_dims[2] = H;
    transformed_dims[3] = W;
  } else {
    D = dims[1];
    H = dims[2];
    W = dims[3];
    C = dims[4];
    transformed_dims[1] = C;
    transformed_dims[2] = D;
    transformed_dims[3] = H;
    transformed_dims[4] = W;
  }
  return transformed_dims;
}

template <>
inline miopenDataType_t ToMIOpenDataType(
    const framework::proto::VarType::Type& t) {
  miopenDataType_t type = miopenFloat;
  switch (t) {
    case framework::proto::VarType::FP16:
      type = miopenHalf;
      break;
    case framework::proto::VarType::FP32:
      type = miopenFloat;
      break;
    default:
      break;
  }
  return type;
}

class ActivationDescriptor {
 public:
  ActivationDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::miopenCreateActivationDescriptor(&desc_));
  }
  ~ActivationDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::miopenDestroyActivationDescriptor(desc_));
  }
  template <typename T>
  void set(miopenActivationMode_t mode, const T& coef) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetActivationDescriptor(
        desc_, mode, static_cast<double>(coef), 0.0, 0.0));
  }

  miopenActivationDescriptor_t desc() { return desc_; }
  miopenActivationDescriptor_t desc() const { return desc_; }

 private:
  miopenActivationDescriptor_t desc_;
};

class TensorDescriptor {
 public:
  TensorDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreateTensorDescriptor(&desc_));
  }
  ~TensorDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroyTensorDescriptor(desc_));
  }
  miopenTensorDescriptor_t desc() { return desc_; }
  miopenTensorDescriptor_t desc() const { return desc_; }

  void set(const Tensor& tensor, const int groups = 1) {
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetTensorDescriptor(
        desc_, ToMIOpenDataType(tensor.type()),
        static_cast<int>(dims_with_group.size()),
        const_cast<int*>(dims_with_group.data()),
        const_cast<int*>(strides.data())));
  }

  void set(const Tensor& tensor, const miopenTensorFormat_t format) {
    const int groups = 1;
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetTensorDescriptor(
        desc_, ToMIOpenDataType(tensor.type()),
        static_cast<int>(dims_with_group.size()),
        const_cast<int*>(dims_with_group.data()),
        const_cast<int*>(strides.data())));
  }

 private:
  miopenTensorDescriptor_t desc_;
};

class FilterDescriptor {
 public:
  FilterDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreateTensorDescriptor(&desc_));
  }
  ~FilterDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroyTensorDescriptor(desc_));
  }
  miopenTensorDescriptor_t desc() { return desc_; }
  miopenTensorDescriptor_t desc() const { return desc_; }

  void set(const Tensor& tensor, const miopenTensorFormat_t format,
           const int groups = 1) {
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> transformed_dims;
    PADDLE_ENFORCE_EQ(format, MIOPEN_TENSOR_NCHW,
                      platform::errors::InvalidArgument(
                          "format should ONLY be NCHW in MIOPEN."));
    transformed_dims = dims;
    if (groups > 1) {
      transformed_dims[1] = transformed_dims[1] / groups;
    }
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenSetTensorDescriptor(
        desc_, ToMIOpenDataType(tensor.type()),
        static_cast<int>(transformed_dims.size()),
        const_cast<int*>(transformed_dims.data()), nullptr));
  }

 private:
  miopenTensorDescriptor_t desc_;
};

class ConvolutionDescriptor {
 public:
  ConvolutionDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::miopenCreateConvolutionDescriptor(&desc_));
  }
  ~ConvolutionDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::miopenDestroyConvolutionDescriptor(desc_));
  }
  miopenConvolutionDescriptor_t desc() { return desc_; }
  miopenConvolutionDescriptor_t desc() const { return desc_; }

  void set(miopenDataType_t dtype, const std::vector<int>& pads,
           const std::vector<int>& strides, const std::vector<int>& dilations,
           bool allow_tf32, const int groups = 1) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenInitConvolutionNdDescriptor(
        desc_, static_cast<int>(pads.size()), const_cast<int*>(pads.data()),
        const_cast<int*>(strides.data()), const_cast<int*>(dilations.data()),
        miopenConvolution));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenSetConvolutionGroupCount(desc_, groups));
  }

 private:
  miopenConvolutionDescriptor_t desc_;
};

}  // namespace platform
}  // namespace paddle