test_helper.h 10.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16
#pragma once

#include <map>
17
#include <memory>
18 19 20
#include <random>
#include <string>
#include <vector>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
24
#include "paddle/fluid/platform/errors.h"
25
#include "paddle/fluid/platform/profiler.h"
26
#include "paddle/pten/backends/dynload/port.h"
27

28 29
DECLARE_bool(use_mkldnn);

30 31 32 33 34 35 36
namespace paddle {
bool gpu_place_used(const paddle::PaddlePlace& place) {
  return place == paddle::PaddlePlace::kGPU;
}
bool xpu_place_used(const paddle::PaddlePlace& place) {
  return place == paddle::PaddlePlace::kXPU;
}
W
Wilber 已提交
37 38 39
bool npu_place_used(const paddle::PaddlePlace& place) {
  return place == paddle::PaddlePlace::kNPU;
}
40 41 42 43 44
bool cpu_place_used(const paddle::PaddlePlace& place) {
  return place == paddle::PaddlePlace::kCPU;
}
}  // namespace paddle

45
template <typename T>
46
void SetupTensor(paddle::framework::LoDTensor* input,
47
                 paddle::framework::DDim dims, T lower, T upper) {
48 49
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
50 51 52 53 54
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  for (int i = 0; i < input->numel(); ++i) {
    input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
55 56 57
  }
}

58
template <typename T>
59 60
void SetupTensor(paddle::framework::LoDTensor* input,
                 paddle::framework::DDim dims, const std::vector<T>& data) {
61
  CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
62 63
  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
64 65
}

66
template <typename T>
67 68 69
void SetupLoDTensor(paddle::framework::LoDTensor* input,
                    const paddle::framework::LoD& lod, T lower, T upper) {
  input->set_lod(lod);
70
  int dim = lod[0][lod[0].size() - 1];
71 72 73 74
  SetupTensor<T>(input, {dim, 1}, lower, upper);
}

template <typename T>
75
void SetupLoDTensor(paddle::framework::LoDTensor* input,
76
                    paddle::framework::DDim dims,
77 78
                    const paddle::framework::LoD lod,
                    const std::vector<T>& data) {
79
  const size_t level = lod.size() - 1;
80
  CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
81
  input->set_lod(lod);
82
  SetupTensor<T>(input, dims, data);
83 84 85
}

template <typename T>
86 87
void CheckError(const paddle::framework::LoDTensor& output1,
                const paddle::framework::LoDTensor& output2) {
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  // Check lod information
  EXPECT_EQ(output1.lod(), output2.lod());

  EXPECT_EQ(output1.dims(), output2.dims());
  EXPECT_EQ(output1.numel(), output2.numel());

  T err = static_cast<T>(0);
  if (typeid(T) == typeid(float)) {
    err = 1E-3;
  } else if (typeid(T) == typeid(double)) {
    err = 1E-6;
  } else {
    err = 0;
  }

  size_t count = 0;
  for (int64_t i = 0; i < output1.numel(); ++i) {
    if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
      count++;
    }
  }
109
  EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
110 111
}

112 113
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
    paddle::framework::Executor* executor, paddle::framework::Scope* scope,
T
Tao Luo 已提交
114 115 116
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  if (is_combined) {
    // All parameters are saved in a single file.
    // Hard-coding the file names of program and parameters in unittest.
    // The file names should be consistent with that used in Python API
    //  `fluid.io.save_inference_model`.
    inference_program =
        paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
                                dirname + "/" + param_filename);
  } else {
    // Parameters are saved in separate files sited in the specified
    // `dirname`.
    inference_program = paddle::inference::Load(executor, scope, dirname);
  }
  return inference_program;
}

std::vector<std::vector<int64_t>> GetFeedTargetShapes(
T
Tao Luo 已提交
135 136 137
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
138 139 140 141
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

T
Tao Luo 已提交
142 143
  auto inference_program = InitProgram(&executor, scope, dirname, is_combined,
                                       prog_filename, param_filename);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  auto& global_block = inference_program->Block(0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  std::vector<std::vector<int64_t>> feed_target_shapes;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    auto* var = global_block.FindVar(feed_target_names[i]);
    std::vector<int64_t> var_shape = var->GetShape();
    feed_target_shapes.push_back(var_shape);
  }

  delete scope;
  return feed_target_shapes;
}

159
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
160 161
void TestInference(const std::string& dirname,
                   const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
162
                   const std::vector<paddle::framework::FetchType*>& cpu_fetchs,
163
                   const int repeat = 1, const bool is_combined = false) {
164
  // 1. Define place, executor, scope
165 166 167 168
  auto place = Place();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

169 170 171 172 173
  // Profile the performance
  paddle::platform::ProfilerState state;
  if (paddle::platform::is_cpu_place(place)) {
    state = paddle::platform::ProfilerState::kCPU;
  } else {
174
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
175
    state = paddle::platform::ProfilerState::kAll;
176 177 178 179
    // The default device_id of paddle::platform::CUDAPlace is 0.
    // Users can get the device_id using:
    //   int device_id = place.GetDeviceId();
    paddle::platform::SetDeviceId(0);
Q
QI JUN 已提交
180
#else
181 182
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "'CUDAPlace' is not supported in CPU only device."));
183 184 185
#endif
  }

186 187
  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
188 189 190

  // Enable the profiler
  paddle::platform::EnableProfiler(state);
191
  {
192
    paddle::platform::RecordEvent record_event("init_program");
193
    inference_program = InitProgram(&executor, scope, dirname, is_combined);
194
  }
X
Xin Pan 已提交
195

196 197
  // Disable the profiler and print the timing information
  paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
198
                                    "load_program_profiler");
199
  paddle::platform::ResetProfiler();
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  // 4. Prepare inputs: set up maps for feed targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
    feed_targets[feed_target_names[i]] = cpu_feeds[i];
  }

  // 5. Define Tensor to get the outputs: set up maps for fetch targets
215
  std::map<std::string, paddle::framework::FetchType*> fetch_targets;
216 217 218 219
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
  }

220 221 222 223
  // 6. If export Flags_use_mkldnn=True, use mkldnn related ops.
  if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program);

  // 7. Run the inference program
224
  {
225 226 227 228
    if (!CreateVars) {
      // If users don't want to create and destroy variables every time they
      // run, they need to set `create_vars` to false and manually call
      // `CreateVariables` before running.
L
Liu Yiqun 已提交
229
      executor.CreateVariables(*inference_program, scope, 0);
230 231
    }

232
    // Ignore the profiling results of the first run
233
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
T
tensor-tang 已提交
234
    bool CreateLocalScope = CreateVars;
235 236
    if (PrepareContext) {
      ctx = executor.Prepare(*inference_program, 0);
237
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
238
                                  &fetch_targets, CreateLocalScope, CreateVars);
239
    } else {
240
      executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
241
                   CreateLocalScope, CreateVars);
242
    }
243 244 245 246

    // Enable the profiler
    paddle::platform::EnableProfiler(state);

247 248
    // Run repeat times to profile the performance
    for (int i = 0; i < repeat; ++i) {
249
      paddle::platform::RecordEvent record_event("run_inference");
250

251
      if (PrepareContext) {
L
Liu Yiqun 已提交
252
        // Note: if you change the inference_program, you need to call
253
        // executor.Prepare() again to get a new ExecutorPrepareContext.
254
        executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
255 256
                                    &fetch_targets, CreateLocalScope,
                                    CreateVars);
257
      } else {
258
        executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
259
                     CreateLocalScope, CreateVars);
260
      }
261 262
    }

263 264
    // Disable the profiler and print the timing information
    paddle::platform::DisableProfiler(
D
daminglu 已提交
265
        paddle::platform::EventSortingKey::kDefault, "run_inference_profiler");
266 267
    paddle::platform::ResetProfiler();
  }
268 269 270

  delete scope;
}