test_helper.h 9.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16
#pragma once

#include <map>
17
#include <memory>
18 19 20
#include <random>
#include <string>
#include <vector>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
24
#include "paddle/fluid/platform/errors.h"
P
peizhilin 已提交
25
#include "paddle/fluid/platform/port.h"
26
#include "paddle/fluid/platform/profiler.h"
27

28 29
DECLARE_bool(use_mkldnn);

30 31 32 33 34 35 36 37 38 39 40 41
namespace paddle {
bool gpu_place_used(const paddle::PaddlePlace& place) {
  return place == paddle::PaddlePlace::kGPU;
}
bool xpu_place_used(const paddle::PaddlePlace& place) {
  return place == paddle::PaddlePlace::kXPU;
}
bool cpu_place_used(const paddle::PaddlePlace& place) {
  return place == paddle::PaddlePlace::kCPU;
}
}  // namespace paddle

42
template <typename T>
43
void SetupTensor(paddle::framework::LoDTensor* input,
44
                 paddle::framework::DDim dims, T lower, T upper) {
45 46
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
47 48 49 50 51
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  for (int i = 0; i < input->numel(); ++i) {
    input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
52 53 54
  }
}

55
template <typename T>
56 57
void SetupTensor(paddle::framework::LoDTensor* input,
                 paddle::framework::DDim dims, const std::vector<T>& data) {
58
  CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
59 60
  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
61 62
}

63
template <typename T>
64 65 66
void SetupLoDTensor(paddle::framework::LoDTensor* input,
                    const paddle::framework::LoD& lod, T lower, T upper) {
  input->set_lod(lod);
67
  int dim = lod[0][lod[0].size() - 1];
68 69 70 71
  SetupTensor<T>(input, {dim, 1}, lower, upper);
}

template <typename T>
72
void SetupLoDTensor(paddle::framework::LoDTensor* input,
73
                    paddle::framework::DDim dims,
74 75
                    const paddle::framework::LoD lod,
                    const std::vector<T>& data) {
76
  const size_t level = lod.size() - 1;
77
  CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
78
  input->set_lod(lod);
79
  SetupTensor<T>(input, dims, data);
80 81 82
}

template <typename T>
83 84
void CheckError(const paddle::framework::LoDTensor& output1,
                const paddle::framework::LoDTensor& output2) {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  // Check lod information
  EXPECT_EQ(output1.lod(), output2.lod());

  EXPECT_EQ(output1.dims(), output2.dims());
  EXPECT_EQ(output1.numel(), output2.numel());

  T err = static_cast<T>(0);
  if (typeid(T) == typeid(float)) {
    err = 1E-3;
  } else if (typeid(T) == typeid(double)) {
    err = 1E-6;
  } else {
    err = 0;
  }

  size_t count = 0;
  for (int64_t i = 0; i < output1.numel(); ++i) {
    if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
      count++;
    }
  }
106
  EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
107 108
}

109 110
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
    paddle::framework::Executor* executor, paddle::framework::Scope* scope,
T
Tao Luo 已提交
111 112 113
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  if (is_combined) {
    // All parameters are saved in a single file.
    // Hard-coding the file names of program and parameters in unittest.
    // The file names should be consistent with that used in Python API
    //  `fluid.io.save_inference_model`.
    inference_program =
        paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
                                dirname + "/" + param_filename);
  } else {
    // Parameters are saved in separate files sited in the specified
    // `dirname`.
    inference_program = paddle::inference::Load(executor, scope, dirname);
  }
  return inference_program;
}

std::vector<std::vector<int64_t>> GetFeedTargetShapes(
T
Tao Luo 已提交
132 133 134
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
135 136 137 138
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

T
Tao Luo 已提交
139 140
  auto inference_program = InitProgram(&executor, scope, dirname, is_combined,
                                       prog_filename, param_filename);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  auto& global_block = inference_program->Block(0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  std::vector<std::vector<int64_t>> feed_target_shapes;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    auto* var = global_block.FindVar(feed_target_names[i]);
    std::vector<int64_t> var_shape = var->GetShape();
    feed_target_shapes.push_back(var_shape);
  }

  delete scope;
  return feed_target_shapes;
}

156
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
157 158
void TestInference(const std::string& dirname,
                   const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
159
                   const std::vector<paddle::framework::FetchType*>& cpu_fetchs,
160
                   const int repeat = 1, const bool is_combined = false) {
161
  // 1. Define place, executor, scope
162 163 164 165
  auto place = Place();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

166 167 168 169 170 171
  // Profile the performance
  paddle::platform::ProfilerState state;
  if (paddle::platform::is_cpu_place(place)) {
    state = paddle::platform::ProfilerState::kCPU;
  } else {
#ifdef PADDLE_WITH_CUDA
172
    state = paddle::platform::ProfilerState::kAll;
173 174 175 176
    // The default device_id of paddle::platform::CUDAPlace is 0.
    // Users can get the device_id using:
    //   int device_id = place.GetDeviceId();
    paddle::platform::SetDeviceId(0);
Q
QI JUN 已提交
177
#else
178 179
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "'CUDAPlace' is not supported in CPU only device."));
180 181 182
#endif
  }

183 184
  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
185 186 187

  // Enable the profiler
  paddle::platform::EnableProfiler(state);
188
  {
189
    paddle::platform::RecordEvent record_event("init_program");
190
    inference_program = InitProgram(&executor, scope, dirname, is_combined);
191
  }
X
Xin Pan 已提交
192

193 194
  // Disable the profiler and print the timing information
  paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
195
                                    "load_program_profiler");
196
  paddle::platform::ResetProfiler();
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  // 4. Prepare inputs: set up maps for feed targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
    feed_targets[feed_target_names[i]] = cpu_feeds[i];
  }

  // 5. Define Tensor to get the outputs: set up maps for fetch targets
212
  std::map<std::string, paddle::framework::FetchType*> fetch_targets;
213 214 215 216
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
  }

217 218 219 220
  // 6. If export Flags_use_mkldnn=True, use mkldnn related ops.
  if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program);

  // 7. Run the inference program
221
  {
222 223 224 225
    if (!CreateVars) {
      // If users don't want to create and destroy variables every time they
      // run, they need to set `create_vars` to false and manually call
      // `CreateVariables` before running.
L
Liu Yiqun 已提交
226
      executor.CreateVariables(*inference_program, scope, 0);
227 228
    }

229
    // Ignore the profiling results of the first run
230
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
T
tensor-tang 已提交
231
    bool CreateLocalScope = CreateVars;
232 233
    if (PrepareContext) {
      ctx = executor.Prepare(*inference_program, 0);
234
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
235
                                  &fetch_targets, CreateLocalScope, CreateVars);
236
    } else {
237
      executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
238
                   CreateLocalScope, CreateVars);
239
    }
240 241 242 243

    // Enable the profiler
    paddle::platform::EnableProfiler(state);

244 245
    // Run repeat times to profile the performance
    for (int i = 0; i < repeat; ++i) {
246
      paddle::platform::RecordEvent record_event("run_inference");
247

248
      if (PrepareContext) {
L
Liu Yiqun 已提交
249
        // Note: if you change the inference_program, you need to call
250
        // executor.Prepare() again to get a new ExecutorPrepareContext.
251
        executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
252 253
                                    &fetch_targets, CreateLocalScope,
                                    CreateVars);
254
      } else {
255
        executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
256
                     CreateLocalScope, CreateVars);
257
      }
258 259
    }

260 261
    // Disable the profiler and print the timing information
    paddle::platform::DisableProfiler(
D
daminglu 已提交
262
        paddle::platform::EventSortingKey::kDefault, "run_inference_profiler");
263 264
    paddle::platform::ResetProfiler();
  }
265 266 267

  delete scope;
}