reducer.cc 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/reducer.h"
16 17
#include "paddle/phi/backends/device_guard.h"
#include "paddle/phi/backends/device_manager.h"
18

19 20
DECLARE_bool(use_stream_safe_cuda_allocator);

21 22 23
namespace paddle {
namespace distributed {

24 25 26 27 28 29 30 31
static Backend TransToBackend(platform::Place place) {
  static const std::map<phi::AllocationType, Backend> type_backend = {
      {phi::AllocationType::GPU, Backend::GPU},
      {phi::AllocationType::CPU, Backend::CPU},
  };

  phi::AllocationType type = place.GetType();
  auto it = type_backend.find(type);
32 33
  PADDLE_ENFORCE_EQ(it != type_backend.end(),
                    true,
34 35 36 37 38
                    platform::errors::InvalidArgument(
                        "Place type (%s) is not supported. ", place));
  return it->second;
}

39 40 41 42 43 44
std::vector<std::vector<size_t>> Eager_AssignGroupBySize(
    const std::vector<Tensor> tensors,
    const std::vector<bool> &is_sparse_gradient,
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
  PADDLE_ENFORCE_EQ(
45 46
      tensors.size(),
      is_sparse_gradient.size(),
47 48 49
      platform::errors::PreconditionNotMet(
          "tensors len must be equal to is_sparse_gradient len, but "
          "[%lu] != [%lu]",
50 51
          tensors.size(),
          is_sparse_gradient.size()));
52 53 54 55 56 57 58 59 60 61 62 63
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };

64 65
  PADDLE_ENFORCE_EQ(true,
                    check_perm(tensor_indices),
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::map<experimental::DataType, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::map<experimental::DataType, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < tensors.size(); ++i) {
    const auto &var = tensors[i];

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
      // we keep sparse var a single group
      res.push_back({tensor_real_index});
      continue;
    }

    const auto &var_dtype = var.dtype();
    VLOG(3) << "var[" << var.name() << "] 's type is " << var_dtype;
    auto &group_info = next_group[var_dtype];

    int64_t var_size = -1;

    if (var.is_dense_tensor()) {
      var_size =
          std::dynamic_pointer_cast<phi::DenseTensor>(var.impl())->numel();
    } else {
      VLOG(3) << "var " << var.name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }

    group_info.first.push_back(tensor_real_index);
    group_info.second += experimental::SizeOf(var_dtype) * var_size;
    // group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
138 139
        group_index.empty(),
        true,
140 141 142 143
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
  if (tensor_indices.empty()) {
144 145
    std::sort(res.begin(),
              res.end(),
146 147 148 149 150 151 152
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
  return res;
}

153
template <typename DeviceContext, typename T>
154 155 156 157 158 159 160 161 162 163 164 165 166
struct ConcatTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
    concat_functor_(
        context,
        dense_tensors_,
        0,
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get());
  }
};
167 168

template <typename DeviceContext, typename T>
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
struct SplitTensorsForAllReduce {
  void operator()(const DeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    std::vector<phi::DenseTensor *> outs;
    std::vector<const phi::DenseTensor *> shape_refer;

    outs.reserve(p_dense_tensors->size());
    shape_refer.reserve(p_dense_tensors->size());

    for (auto &tensor : *p_dense_tensors) {
      outs.emplace_back(&tensor);
      shape_refer.emplace_back(&tensor);
    }
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
};

#ifdef PADDLE_WITH_CUSTOM_DEVICE
// note(wangran16): A temporary solution for all backends.
template <typename T>
struct ConcatTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  const std::vector<phi::DenseTensor> &dense_tensors_,
                  Tensor *p_dense_contents) {
    phi::DeviceGuard guard(context.GetPlace());
    auto *out =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *out_data = reinterpret_cast<uint8_t *>(out->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());

    size_t offset = 0;
    for (const auto &tensor : dense_tensors_) {
      const uint8_t *in_data =
          reinterpret_cast<const uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
      device->MemoryCopyD2D(out_data + offset, in_data, sz, nullptr);
      offset += sz;
    }
214
  }
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
};

template <typename T>
struct SplitTensorsForAllReduce<platform::CustomDeviceContext, T> {
  void operator()(const platform::CustomDeviceContext &context,
                  Tensor *p_dense_contents,
                  std::vector<phi::DenseTensor> *p_dense_tensors) {
    auto *in =
        std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
            .get();
    uint8_t *in_data = reinterpret_cast<uint8_t *>(in->data<T>());
    auto *device = phi::DeviceManager::GetDeviceWithPlace(context.GetPlace());

    size_t offset = 0;
    for (auto &tensor : *p_dense_tensors) {
      uint8_t *out_data = reinterpret_cast<uint8_t *>(tensor.data<T>());
      auto sz = tensor.numel() * sizeof(T);
      device->MemoryCopyD2D(out_data, in_data + offset, sz, nullptr);
      offset += sz;
    }
  }
};
#endif
238 239 240 241 242 243

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
244 245
    Tensor *p_dense_contents,
    phi::DataType type) {
246 247
  switch (type) {
    case phi::DataType::FLOAT16:
248
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>()(
249 250 251
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT32:
252
      ConcatTensorsForAllReduce<DeviceContext, float>()(
253
          context, dense_tensors_, p_dense_contents);
254 255
      break;
    case phi::DataType::FLOAT64:
256
      ConcatTensorsForAllReduce<DeviceContext, double>()(
257
          context, dense_tensors_, p_dense_contents);
258
      break;
259 260 261 262
    case phi::DataType::BFLOAT16:
      ConcatTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, dense_tensors_, p_dense_contents);
      break;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <typename DeviceContext>
static void SplitTensorsWithType(const DeviceContext &context,
                                 Tensor *p_dense_contents,
                                 std::vector<phi::DenseTensor> *p_dense_tensors,
                                 phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT16:
279
      SplitTensorsForAllReduce<DeviceContext, platform::float16>()(
280 281 282
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT32:
283
      SplitTensorsForAllReduce<DeviceContext, float>()(
284
          context, p_dense_contents, p_dense_tensors);
285 286
      break;
    case phi::DataType::FLOAT64:
287
      SplitTensorsForAllReduce<DeviceContext, double>()(
288
          context, p_dense_contents, p_dense_tensors);
289
      break;
290 291 292 293
    case phi::DataType::BFLOAT16:
      SplitTensorsForAllReduce<DeviceContext, platform::bfloat16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
294 295 296 297 298 299 300 301
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}

J
james 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
#ifdef PADDLE_WITH_XPU_BKCL
// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
    Tensor *p_dense_contents,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT16:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext,
                                platform::float16>()(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    Tensor *p_dense_contents,
    std::vector<phi::DenseTensor> *p_dense_tensors,
    phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT16:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, platform::float16>()(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}
#endif

353
void EagerGroup::ConcatTensors(const platform::Place &place) {
354 355 356
  dense_contents_ =
      paddle::experimental::empty(IntArray({all_length_}), dtype_, place);

357 358
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
359
    auto *default_ctx = static_cast<phi::GPUContext *>(
360
        platform::DeviceContextPool::Instance().Get(place));
361 362
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
363 364 365 366
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
367 368 369 370 371 372 373 374 375 376 377 378
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto *default_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
379 380 381 382 383 384 385 386 387 388 389
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
390 391
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
392
    auto *default_ctx = static_cast<phi::CPUContext *>(
393
        platform::DeviceContextPool::Instance().Get(place));
394 395
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
396 397 398 399 400 401
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

402 403
void EagerGroup::SplitTensorsDev(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
404 405
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
406
    auto &gpu_context = static_cast<const phi::GPUContext &>(context);
407
    SplitTensorsWithType(
408 409 410 411 412 413 414 415
        gpu_context, &dense_contents_, &dense_tensors_, dtype_);
    if (FLAGS_use_stream_safe_cuda_allocator) {
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(dense_contents_.impl());
      VLOG(3) << "Free dense_contents_ " << dense_contents_.numel();
      memory::RecordStream(dense_tensor->Holder(), gpu_context.stream());
      dense_contents_.reset();
    }
416 417 418 419
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
420 421 422 423
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    SplitTensorsWithType(
424 425 426 427
        static_cast<const platform::CustomDeviceContext &>(context),
        &dense_contents_,
        &dense_tensors_,
        dtype_);
428 429 430 431 432
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
J
james 已提交
433 434 435 436 437 438 439 440 441 442 443
#endif
  } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto *default_ctx = static_cast<paddle::platform::XPUDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(place));
    SplitTensorsWithType(
        *default_ctx, &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
444 445
#endif
  } else if (platform::is_cpu_place(place)) {
446 447 448 449
    SplitTensorsWithType(static_cast<const phi::CPUContext &>(context),
                         &dense_contents_,
                         &dense_tensors_,
                         dtype_);
450 451 452 453 454 455 456 457 458 459 460
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
  }
}

EagerReducer::EagerReducer(
    const std::vector<Tensor> tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
461 462
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    : tensors_(tensors),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
      process_group_(process_group),
      group_size_limits_(group_size_limits),
      find_unused_vars_each_step_(find_unused_parameters) {
  VLOG(3) << "Start construct the Reducer ...";

  nranks_ = process_group_->GetSize();

  // initialize groups
  InitializeGroups(group_indices);

  for (size_t global_var_index = 0; global_var_index < tensors_.size();
       ++global_var_index) {
    auto tensor = tensors_[global_var_index];
    auto reduce_hook = [=](void) -> void {
      this->AddDistHook(global_var_index);
    };

    const auto &grad_node = GetGradNodeFromTensor(&tensor);

    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    const auto &accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    accumulation_grad_node->RegisterReduceHook(
493
        std::make_shared<egr::CppVoidHook>(reduce_hook));
494 495

    gradnode_index_map_[grad_node.get()] = global_var_index;
496 497 498 499
  }

  vars_marked_ready_.resize(tensors_.size(), false);
  local_used_vars_.resize(tensors_.size(), 0);
500 501 502

  if (find_unused_vars_each_step_) {
    global_used_vars_ = paddle::experimental::empty(
503 504
        IntArray({static_cast<int32_t>(tensors_.size())}),
        DataType::INT32,
505
        inner_place_);
506
  }
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
}

std::shared_ptr<egr::GradNodeBase> EagerReducer::GetGradNodeFromTensor(
    Tensor *tensor) {
  auto *autograd_meta = tensor->get_autograd_meta();
  const auto &grad_node =
      static_cast<egr::AutogradMeta *>(autograd_meta)->GetMutableGradNode();
  return grad_node;
}

void EagerReducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";

  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());

  variable_locators_.clear();
  variable_locators_.resize(tensors_.size());

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &tensor_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
532 533
        tensor_indices_.size(),
        0,
534 535 536 537 538 539 540 541 542 543 544
        platform::errors::PreconditionNotMet(
            "The number of group[%d]'s elements is 0.", group_index));

    EagerGroup group;

    // It's just for check the sparse or dense
    auto first_var = tensors_[tensor_indices_.front()];
    if (tensor_indices_.size() == 1 &&
        is_sparse_gradient_[tensor_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_var.dtype();
545
      group.is_sparse_ = true;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    } else {
      // process the dense gradient.
      InitializeDenseGroups(tensor_indices_, &group);
    }

    // map tensors to this group by VariableLocator
    size_t inside_group_index = 0;
    for (const auto var_index : tensor_indices_) {
      TensorLocator tensor_locator;
      tensor_locator.group_index = group_index;
      tensor_locator.inside_group_index = inside_group_index++;
      variable_locators_[var_index] = tensor_locator;
    }
    group.tensor_indices_ = std::move(tensor_indices_);
    groups_.emplace_back(std::move(group));

    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
  }
}

void EagerReducer::InitializeDenseGroups(
    const std::vector<size_t> &tensor_indices_, EagerGroup *p_group) {
  VLOG(3) << "InitializeDenseGroups.";
  int64_t all_length = 0;
  for (size_t index = 0; index < tensor_indices_.size(); ++index) {
    auto tensor_index = tensor_indices_[index];
    auto &tensor = tensors_[tensor_index];
    auto &tensor_name = tensor.name();

575 576
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[tensor_index],
                      false,
577 578 579 580 581
                      platform::errors::PreconditionNotMet(
                          "Tensor %s's GRAD must be Tensor, but received "
                          "GRAD is SelectedRows",
                          tensor_name));

582 583
    PADDLE_ENFORCE_EQ(tensor.initialized(),
                      true,
584 585 586 587
                      platform::errors::PreconditionNotMet(
                          "Tensor %s is not initialized.", tensor_name));
    const auto size = tensor.numel();
    PADDLE_ENFORCE_GT(
588 589
        size,
        0,
590 591
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", tensor_name));
592 593 594 595 596
    all_length += size;

    p_group->length_.push_back(size);

    // for concat operator
597
    p_group->origin_shapes_.push_back(IntArray(tensor.shape()));
598 599 600 601 602
    p_group->dense_tensors_.push_back(phi::DenseTensor());

    const auto &dtype = tensor.dtype();
    const auto &inner_place = tensor.impl()->place();
    if (index > 0) {
603 604
      PADDLE_ENFORCE_EQ(dtype,
                        p_group->dtype_,
605 606 607 608 609 610 611 612 613 614
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has unexpected dtype.", tensor_name));
    } else {
      p_group->dtype_ = dtype;
      inner_place_ = inner_place;
    }
  }
  p_group->all_length_ = all_length;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
void EagerReducer::TraverseBackwardGraph(const std::vector<Tensor> &outputs) {
  std::queue<egr::GradNodeBase *> queue;
  std::set<egr::GradNodeBase *> visited;

  for (const auto &output : outputs) {
    auto *auto_grad_meta =
        static_cast<egr::AutogradMeta *>(output.get_autograd_meta());
    if (!auto_grad_meta) continue;
    auto shared_grad_node = auto_grad_meta->GetMutableGradNode();
    if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr ||
        auto_grad_meta->StopGradient()) {
      continue;
    }
    egr::GradNodeBase *grad_node = shared_grad_node.get();
    queue.emplace(grad_node);
  }

  while (!queue.empty()) {
    egr::GradNodeBase *node = queue.front();
    queue.pop();
635 636 637 638 639 640
    const paddle::small_vector<std::vector<egr::GradSlotMeta>,
                               egr::kSlotSmallVectorSize> &metas =
        node->OutputMeta();
    for (size_t i = 0; i < metas.size(); i++) {
      for (size_t j = 0; j < metas[i].size(); j++) {
        const egr::Edge &edge = metas[i][j].GetEdge();
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        auto next_node_shared = edge.GetMutableGradNode();
        if (!next_node_shared || !next_node_shared.get()) {
          continue;
        }
        auto *next_node = next_node_shared.get();
        const bool was_inserted = visited.insert(next_node).second;
        if (was_inserted) {
          queue.emplace(next_node);
        }
      }
    }
  }

  for (const auto &it : gradnode_index_map_) {
    if (visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
              << "Tensor " << tensors_[it.second].name() << " at index "
              << it.second << " is marked as unused.";
    }
  }
}

664
void EagerReducer::PrepareForBackward(const std::vector<Tensor> &outputs) {
665
  VLOG(3) << "after forward, then reset count for backward.";
666
  grad_need_hooks_ = true;
667

668 669 670
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](EagerGroup &group) {
    group.pending_ = group.tensor_indices_.size();
671
    group.sparse_contents_ = Tensor();
672 673 674 675 676
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(tensors_.size(), false);
677 678

  PADDLE_ENFORCE_EQ(
679 680
      groups_need_finalize_,
      false,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
  }

  if (unused_vars_.size() == tensors_.size()) {
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
723 724 725
}

void EagerReducer::AddDistHook(size_t var_index) {
726 727
  PADDLE_ENFORCE_LT(var_index,
                    variable_locators_.size(),
728 729 730
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
731 732
                        variable_locators_.size(),
                        var_index));
733 734

  // gradient synchronization is not required when grad_need_hooks_ is false.
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  if (!grad_need_hooks_) {
    const auto &var_locator = variable_locators_[var_index];
    const auto group_index = var_locator.group_index;
    const auto inside_group_index = var_locator.inside_group_index;
    auto &group = groups_[group_index];
    auto &group_tensor = group.dense_tensors_[inside_group_index];

    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    if (!HasGrad(var_index)) {
      group_tensor.ShareDataWith(phi::DenseTensor());
    } else {
      auto grad_dense_tensor =
          *(std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl()));
      group_tensor.ShareDataWith(grad_dense_tensor);
    }
    return;
  }
754

755 756
  VLOG(3) << "Tensor[" << var_index << "] [" << tensors_[var_index].name()
          << "@Grad] arrived and triggered disthook";
757 758 759

  local_used_vars_[var_index] = 1;

760 761 762 763 764 765
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (const auto unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }
766 767 768 769 770
  MarkVarReady(var_index, true);
}

void EagerReducer::MarkVarReady(const size_t var_index,
                                const bool is_used_var) {
771 772 773 774 775 776 777 778 779 780 781 782 783
  VLOG(3) << "Tensor[" << var_index << "][" << tensors_[var_index].name()
          << "] is marked ready.";
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
784 785
        var_index,
        tensors_[var_index].name());
786

787 788
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      false,
789 790 791 792 793 794 795 796 797 798 799 800 801 802
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

803 804
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      true,
805 806 807 808 809 810
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }
  groups_need_finalize_ = true;

811 812 813 814 815 816
  const auto &var_locator = variable_locators_[var_index];
  const auto group_index = var_locator.group_index;
  const auto inside_group_index = var_locator.inside_group_index;

  auto &group = groups_[group_index];
  auto &group_tensor = group.dense_tensors_[inside_group_index];
817 818
  const auto length = group.length_[inside_group_index];

819 820 821 822 823
  if (!group.is_sparse_) {
    if (is_used_var) {
      auto *autograd_meta = tensors_[var_index].get_autograd_meta();
      auto &grad_tensor =
          static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();
824 825
      group_tensor
          .ShareDataWith(*(
826 827
              std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl())))
          .Resize({grad_tensor.numel()});
828
    } else {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
      // TODO(shenliang03): maybe save the memory by avoiding tensor
      // construction
      if (!group_tensor.initialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(inner_place_, group.dtype_);
      }
      if (HasGrad(var_index)) {
        VLOG(3) << "Tensor[" << tensors_[var_index].name() << "] has grad";
        auto grad_tensor = egr::EagerUtils::mutable_grad(tensors_[var_index]);
        group_tensor
            .ShareDataWith(*(std::dynamic_pointer_cast<phi::DenseTensor>(
                grad_tensor->impl())))
            .Resize({length});
      } else {
        VLOG(3) << "Tensor[" << tensors_[var_index].name()
                << "] doesn't have grad";
        auto *dev_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group_tensor.Resize({static_cast<int64_t>(length)});
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
      }
850
    }
851 852 853 854 855 856
  } else {
    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    // process sparse group
    PADDLE_ENFORCE_EQ(
857 858
        HasGrad(var_index),
        true,
859 860 861 862 863 864 865
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
866 867
            var_index,
            tensors_[var_index].name()));
868 869 870

    // need to check tensor type
    PADDLE_ENFORCE_EQ(
871 872
        grad_tensor.is_selected_rows(),
        true,
873 874 875 876 877 878 879 880 881
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
882 883
            var_index,
            tensors_[var_index].name()));
884 885

    group.sparse_contents_.set_impl(grad_tensor.impl());
886
  }
887 888 889 890 891

  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }
892 893 894 895

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
896 897 898 899 900 901
}

void EagerReducer::MarkGroupReady(size_t group_index) {
  VLOG(3) << "Group[" << group_index << "] is ready";

  PADDLE_ENFORCE_GE(
902 903
      group_index,
      next_group_,
904 905 906 907
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
908 909
          next_group_,
          group_index));
910 911 912 913 914 915 916 917 918

  if (group_index > next_group_) {
    VLOG(3) << "It will adjust the order of group in next batch automatically";
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    UNUSED auto &group = groups_[next_group_];
919 920 921 922
    if (group.is_sparse_) {
      AllReduceSparse(&group, next_group_);
    } else {
      FusedAllReduceSchedule(&group, next_group_);
923
    }
924 925 926
  }
}

927 928
bool EagerReducer::HasGrad(size_t var_index) {
  auto grad = egr::EagerUtils::mutable_grad(tensors_[var_index]);
929
  if (grad && grad->initialized()) {
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    return true;
  } else {
    return false;
  }
}

void EagerReducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');

  const auto *dev_ctx =
      platform::DeviceContextPool::Instance().Get(inner_place_);
  auto *global_used_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(global_used_vars_.impl())
          .get();
947 948
  framework::TensorFromVector<int32_t>(
      local_used_vars_, *dev_ctx, global_used_tensor);
949 950 951 952

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {global_used_vars_};
953 954 955 956 957
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
958

959 960
  framework::TensorToVector<int>(
      *global_used_tensor, *dev_ctx, &local_used_vars_);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
  dev_ctx->Wait();

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
            << "Var [" << var_index << "] [" << tensors_[var_index].name()
            << "] global_unused: " << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Set Tensor[" << var_index << "]'s Grad for [Rank "
              << process_group_->GetRank() << "]";
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      auto &src_tensor = group.dense_tensors_[inside_group_index];

986 987 988 989 990
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }

991 992 993 994 995 996 997
      // NOTE(haohongxiang): Calling SetFakeEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      std::static_pointer_cast<egr::GradNodeAccumulation>(
          GetGradNodeFromTensor(&tensors_[var_index]))
          ->SetFakeEmpty(false);

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
      Tensor grad_value(std::make_shared<phi::DenseTensor>(src_tensor));

      auto dest_var_base = tensors_[var_index];
      auto grad_tensor = egr::EagerUtils::mutable_grad(dest_var_base);
      grad_tensor->copy_(grad_value, inner_place_, true);
      grad_tensor->reshape(dest_var_base.shape());
    }
  }
}

void EagerReducer::FinalizeBackward() {
  groups_need_finalize_ = false;
1010
  grad_need_hooks_ = false;
1011
  for (auto &group : groups_) {
1012
    if (!group.is_sparse_) {
1013 1014
      group.task->Synchronize();
    }
1015 1016 1017
  }

  for (auto &group : groups_) {
1018
    if (!group.is_sparse_) {
1019
      group.dense_contents_.reset();
1020
    }
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  }

  if (find_unused_vars_each_step_) {
    ProcessUnusedDenseVars();
    local_used_vars_.clear();
    local_used_vars_.resize(tensors_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
                                          const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;

  VLOG(3) << "group [" << curr_group_index << "] start fused_allreduce.";

  // concat tensors
  group->ConcatTensors(inner_place_);

  // div nranks
1045 1046
  paddle::experimental::scale_(
      group->dense_contents_, 1.0 / nranks_, 0.0, false);
1047 1048 1049

  // all_reduce
  std::vector<Tensor> reduce_tensors = {group->dense_contents_};
1050 1051 1052 1053 1054
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  group->task = process_group_->AllReduce(in_out, in_out, opts);
1055

1056 1057 1058
  const auto &context = process_group_->GetDeviceContext(inner_place_);
  group->SplitTensorsDev(context);
  group->task->UpdateWaitChain(context);
1059
  // split in FinalizeBackward()
1060 1061
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
void EagerReducer::AllReduceSparse(EagerGroup *group,
                                   const int curr_group_index) {
  // div nranks
  Tensor sparse_tensor(group->sparse_contents_);
  paddle::experimental::scale_(sparse_tensor, 1.0 / nranks_, 0.0, false);

  VLOG(3) << "sparse_group [" << curr_group_index << "] start allreduce.";

  auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_);
  if (platform::is_gpu_place(inner_place_)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
1073
    dev_ctx = static_cast<phi::GPUContext *>(
1074 1075 1076 1077 1078
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
#endif
  } else if (platform::is_custom_place(inner_place_)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    dev_ctx = static_cast<platform::CustomDeviceContext *>(
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with "
        "CUSTOM_DEVICE,"
        "Please recompile or reinstall Paddle with CUSTOM_DEVICE support."));
1089 1090
#endif
  } else if (platform::is_cpu_place(inner_place_)) {
L
Leo Chen 已提交
1091
    dev_ctx = static_cast<phi::CPUContext *>(
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        platform::DeviceContextPool::Instance().Get(inner_place_));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", inner_place_));
  }

  auto src = std::dynamic_pointer_cast<phi::SelectedRows>(
      group->sparse_contents_.impl());
  const auto &src_rows = src->rows();

  const auto &rank_ = process_group_->GetRank();
  const auto &size_ = process_group_->GetSize();

  framework::Vector<int64_t> rows_num_vector(size_);
  rows_num_vector[rank_] = static_cast<int64_t>(src_rows.size());

  Tensor rows_num_tensor = paddle::experimental::empty(
      IntArray({static_cast<int64_t>(size_)}), DataType::INT64, inner_place_);
  auto *rows_num_dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(rows_num_tensor.impl()).get();
1112 1113
  framework::TensorFromVector<int64_t>(
      rows_num_vector, *dev_ctx, rows_num_dense_tensor);
1114 1115 1116 1117

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {rows_num_tensor};
1118 1119 1120 1121 1122
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
1123

1124 1125
  framework::TensorToVector<int64_t>(
      *rows_num_dense_tensor, *dev_ctx, &rows_num_vector);
1126 1127 1128
  dev_ctx->Wait();

  const auto *cpu_rows_num_ptr = rows_num_vector.data();
1129 1130
  auto rows_num = std::accumulate(
      cpu_rows_num_ptr, cpu_rows_num_ptr + size_, static_cast<int64_t>(0));
1131 1132 1133 1134 1135 1136 1137

  VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',')
          << ", total rows number: " << rows_num
          << ", height: " << src->height();

  dev_ctx->Wait();

1138 1139 1140
  Tensor src_value_tensor(std::make_shared<phi::DenseTensor>(src->value()));
  std::vector<int64_t> dst_shape = src_value_tensor.shape();

1141 1142 1143
  if (std::all_of(cpu_rows_num_ptr, cpu_rows_num_ptr + size_, [&](int64_t row) {
        return row == cpu_rows_num_ptr[0];
      })) {
1144 1145 1146 1147 1148 1149 1150
    // During sparse communication, the number of each card is same.
    // allgather is used to speed up the allreduce by replacing broadcast.

    VLOG(3) << "allgather replaces broadcast to speed up in sparse allreduce";

    Tensor dst_rows_tensor =
        paddle::experimental::empty(IntArray({static_cast<int64_t>(rows_num)}),
1151 1152
                                    DataType::INT64,
                                    inner_place_);
1153
    Tensor src_rows_tensor = paddle::experimental::empty(
1154 1155
        IntArray({static_cast<int64_t>((*src).rows().size())}),
        DataType::INT64,
1156 1157 1158 1159
        inner_place_);
    auto *src_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(src_rows_tensor.impl())
            .get();
1160 1161
    framework::TensorFromVector<int64_t>(
        (*src).rows(), *dev_ctx, src_rows_dense_tensor);
1162 1163 1164

    std::vector<Tensor> src_rows_tensors = {src_rows_tensor};
    std::vector<Tensor> dst_rows_tensors = {dst_rows_tensor};
1165 1166 1167 1168 1169 1170 1171 1172 1173
    std::vector<phi::DenseTensor> in;
    std::vector<phi::DenseTensor> out;
    for (auto &t : src_rows_tensors) {
      in.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_rows_tensors) {
      out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(in, out)->Synchronize();
1174 1175 1176 1177 1178

    framework::Vector<int64_t> dst_rows_vector(rows_num, 0);
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1179 1180
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1181 1182 1183 1184
    dev_ctx->Wait();

    dst_shape[dst_shape.size() - 2] = rows_num;
    auto dst_dense_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
1185 1186
        paddle::experimental::full(
            IntArray(dst_shape), 0, src_value_tensor.dtype(), inner_place_)
1187 1188 1189 1190 1191 1192 1193 1194 1195
            .impl());

    auto dst =
        std::make_shared<phi::SelectedRows>(dst_rows_vector, (*src).height());
    *(dst->mutable_value()) = *dst_dense_tensor;
    Tensor dst_value_tensor(std::make_shared<phi::DenseTensor>(dst->value()));

    std::vector<Tensor> src_value_tensors = {src_value_tensor};
    std::vector<Tensor> dst_value_tensors = {dst_value_tensor};
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    std::vector<phi::DenseTensor> src_dense;
    std::vector<phi::DenseTensor> dst_dense;
    for (auto &t : src_value_tensors) {
      src_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_value_tensors) {
      dst_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(src_dense, dst_dense)->Synchronize();
1207 1208 1209 1210 1211

    src->set_rows(dst_rows_vector);
    *(src->mutable_value()) =
        *(std::dynamic_pointer_cast<phi::DenseTensor>(dst_value_tensor.impl()));
  } else {
1212 1213 1214 1215 1216 1217 1218
    std::vector<Tensor> rows_tensors;
    std::vector<Tensor> values_tensors;

    for (int i = 0; i < size_; ++i) {
      std::vector<int64_t> value_tensor_shape = {
          cpu_rows_num_ptr[i], dst_shape[dst_shape.size() - 1]};
      Tensor rows_tensor = paddle::experimental::full(
1219 1220 1221 1222
          IntArray({static_cast<int64_t>(cpu_rows_num_ptr[i])}),
          0,
          DataType::INT64,
          inner_place_);
1223 1224 1225 1226 1227 1228 1229 1230 1231
      Tensor values_tensor = paddle::experimental::full(
          IntArray(value_tensor_shape), 0, src->value().dtype(), inner_place_);
      std::vector<phi::DenseTensor> rows_dense_vector;
      std::vector<phi::DenseTensor> values_dense_vector;

      if (i == rank_) {
        auto *rows_dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl())
                .get();
1232 1233
        framework::TensorFromVector<int64_t>(
            src_rows, *dev_ctx, rows_dense_tensor);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
        values_tensor.set_impl(
            std::make_shared<phi::DenseTensor>(src->value()));
      }
      rows_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl()));
      values_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(values_tensor.impl()));

      auto b_opts = BroadcastOptions();
      b_opts.source_rank = i;
      process_group_->Broadcast(rows_dense_vector, rows_dense_vector, b_opts);
      process_group_
          ->Broadcast(values_dense_vector, values_dense_vector, b_opts)
          ->Wait();
      rows_tensors.push_back(rows_tensor);
      values_tensors.push_back(values_tensor);
    }

    Tensor dst_rows_tensor =
        paddle::experimental::concat(rows_tensors, phi::Scalar(0));
    framework::Vector<int64_t> dst_rows_vector(rows_num, 0);
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1258 1259
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1260 1261 1262 1263 1264 1265
    src->set_rows(dst_rows_vector);

    Tensor dst_values_tensor =
        paddle::experimental::concat(values_tensors, phi::Scalar(0));
    *(src->mutable_value()) = *(
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_values_tensor.impl()));
1266 1267 1268
  }
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
std::ostream &operator<<(std::ostream &out, const EagerGroup &group) {
  const auto &tensors_ = group.tensor_indices_;
  out << "numel: " << group.all_length_ << " ;var number: " << tensors_.size()
      << "\n";
  auto begin = tensors_.begin();
  auto end = tensors_.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

1287 1288
}  //  namespace distributed
}  //  namespace paddle