sequence_expand_op.cc 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/sequence_expand_op.h"
W
wanghaoshuang 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
yangyaming 已提交
20
using framework::LoDTensor;
W
wanghaoshuang 已提交
21

W
wanghaoshuang 已提交
22
class SequenceExpandOp : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceExpandOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
36
    auto out_dims = x_dims;
Y
yangyaming 已提交
37 38
    int ref_level = ctx->Attrs().Get<int>("ref_level");

Y
yangyaming 已提交
39 40
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Dimension number of Input(X) should be at least 2.");
Y
yangyaming 已提交
41 42 43 44 45 46 47 48 49 50 51

    if (ctx->IsRuntime()) {
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
      framework::Variable* y_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);

      auto& x_lod = x_var->Get<LoDTensor>().lod();
      auto& y_lod = y_var->Get<LoDTensor>().lod();

      PADDLE_ENFORCE_LE(x_lod.size(), 1,
Y
yangyaming 已提交
52
                        "Level number of Input(X)'s lod should not be "
Y
yangyaming 已提交
53
                        "greater than 1.");
Y
yangyaming 已提交
54 55 56 57 58 59 60 61 62 63 64
      PADDLE_ENFORCE_GT(y_lod.size(), 0,
                        "Level number of Input(Y)'s lod should be "
                        "greater than 0.");
      PADDLE_ENFORCE(
          ref_level == -1 ||
              (ref_level >= 0 && ref_level < static_cast<int>(y_lod.size())),
          "Invlid `ref_level`, which should be either equal to -1 "
          "or in [0, %d)",
          y_lod.size());

      if (ref_level == -1) ref_level = y_lod.size() - 1;
Y
yangyaming 已提交
65

Y
yangyaming 已提交
66
      if (x_lod.size() > 0) {
Y
yangyaming 已提交
67 68 69 70
        PADDLE_ENFORCE(x_lod[0].size() == y_lod[ref_level].size(),
                       "Level number of Input(X)'s lod could be 0. Otherwise "
                       "size of Input(X)'s first level lod should be equal to "
                       "size of Input(Y)'s referred level lod.");
Y
yangyaming 已提交
71 72
      }

Y
yangyaming 已提交
73
      int64_t out_first_dim = 0;
Y
yangyaming 已提交
74
      if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
75 76
        out_first_dim = x_dims[0];
      } else {
Y
yangyaming 已提交
77 78 79 80
        for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
          int x_seq_len = 1;
          if (x_lod.size() == 1) {
            x_seq_len = x_lod[0][i] - x_lod[0][i - 1];
Y
yangyaming 已提交
81
          }
Y
yangyaming 已提交
82 83
          out_first_dim +=
              (y_lod[ref_level][i] - y_lod[ref_level][i - 1]) * x_seq_len;
Y
yangyaming 已提交
84 85
        }
      }
Y
yangyaming 已提交
86 87
      out_dims[0] = out_first_dim;
      ctx->SetOutputDim("Out", out_dims);
Y
yangyaming 已提交
88
    } else {
Y
yangyaming 已提交
89 90 91
      out_dims[0] = -1;
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
Y
yangyaming 已提交
92
    }
W
wanghaoshuang 已提交
93 94 95
  }
};

W
wanghaoshuang 已提交
96
class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
97
 public:
98
  SequenceExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaoshuang 已提交
99
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
100
    AddInput("X",
Y
yangyaming 已提交
101 102
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor whose lod "
             "level is at most 1.");
W
wanghaoshuang 已提交
103
    AddInput("Y",
Y
yangyaming 已提交
104 105
             "(LoDTensor, default LoDTensor<float>) Referred LoDTensor whose "
             "lod (specified level) is referred by Input(X).");
W
wanghaoshuang 已提交
106
    AddOutput("Out",
Y
yangyaming 已提交
107 108
              "(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
              "generated from Input(X) by referring lod of Input(Y).");
Y
yangyaming 已提交
109
    AddAttr<int>("ref_level", "Specify lod level of Input(Y).").SetDefault(-1);
W
wanghaoshuang 已提交
110
    AddComment(R"DOC(
W
wanghaoshuang 已提交
111
Sequence Expand Operator.
W
wanghaoshuang 已提交
112

Y
yangyaming 已提交
113 114 115 116 117 118 119
This operator expands `X` according to specified level lod of `Y`. Current
implementation constaints that lod level of `X` should be at most 1. Attribute
`ref_level` is used to specify which level lod of `Y` is referred to expand `X`.
If set `ref_level` to -1, then last level lod of `Y` would be referred.
Please note, rank of `X` should be at least 2, when the rank exceeds 2, `X`
would be viewed as a 2-D tensor.

120
Following are cases to better explain how this works:
Y
yangyaming 已提交
121

W
wanghaoshuang 已提交
122
Case 1:
W
wanghaoshuang 已提交
123

Y
yangyaming 已提交
124 125 126
Given a 1-level LoDTensor input(X)
    X.lod =  [[0,   2,        4]]
    X.data = [[a], [b], [c], [d]]
W
wanghaoshuang 已提交
127 128 129 130
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
Y
yangyaming 已提交
131 132 133 134
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,        4,        6,        8]]
    Out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
W
wanghaoshuang 已提交
135
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
136 137 138

Case 2:

Y
yangyaming 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
Given 1-level LoDTensor input(X)
    X.lod =  [[0,   1,        4]]
    X.data = [[a], [b], [c], [d]]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,             5,             8]]
    Out.data = [[a], [a], [b], [c], [d], [b], [c], [d]]
    Out.dims = [8, 1]

Case 3:

W
wanghaoshuang 已提交
154
Given a common Tensor input(X)
Y
yangyaming 已提交
155
    X.data = [[a], [b], [c]]
W
wanghaoshuang 已提交
156 157 158
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
159 160 161
ref_level: -1
then we a common Tensor
    Out.data = [[a], [a], [b], [c], [c], [c]]
W
wanghaoshuang 已提交
162
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
163

Y
yangyaming 已提交
164
Case 4:
W
wanghaoshuang 已提交
165

W
wanghaoshuang 已提交
166
Given a common Tensor input(X)
W
wanghaoshuang 已提交
167 168 169 170
    X.data = [[a, b], [c, d], [e, f]]
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
171 172 173
ref_level: 0
then we get a common LoDTensor
    Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
W
wanghaoshuang 已提交
174 175
    Out.dims = [6, 2]

W
wanghaoshuang 已提交
176 177 178 179
)DOC");
  }
};

W
wanghaoshuang 已提交
180
class SequenceExpandOpGrad : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
181 182 183 184 185
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
186 187
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null.");
W
wanghaoshuang 已提交
188
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
Y
yangyaming 已提交
189 190
                   "Input(Out@GRAD) should not be null.");

W
wanghaoshuang 已提交
191 192
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
Y
yangyaming 已提交
193

W
wanghaoshuang 已提交
194 195 196 197 198 199 200 201 202 203
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
wanghaoshuang 已提交
204 205
REGISTER_OP(sequence_expand, ops::SequenceExpandOp, ops::SequenceExpandOpMaker,
            sequence_expand_grad, ops::SequenceExpandOpGrad);
Q
QI JUN 已提交
206
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
207
    sequence_expand,
Y
yangyaming 已提交
208 209 210 211
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int64_t>);
W
wanghaoshuang 已提交
212
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
213
    sequence_expand_grad,
Y
yangyaming 已提交
214 215 216 217
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);