pool_with_index_op.cc 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
16

F
From00 已提交
17 18 19 20 21
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
C
chengduoZH 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28
inline int MaxPoolOutputSize(int input_size,
                             int filter_size,
                             int padding,
C
chengduoZH 已提交
29
                             int stride) {
30 31 32 33 34
  PADDLE_ENFORCE_NE(
      stride,
      0,
      phi::errors::InvalidArgument(
          "The stride of MaxPool shall not be 0, but received %d.", stride));
C
chengduoZH 已提交
35 36 37 38 39 40 41 42
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
chengduoZH 已提交
43
 protected:
44
  phi::KernelKey GetExpectedKernelType(
C
chengduoZH 已提交
45
      const framework::ExecutionContext &ctx) const override {
46 47
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          ctx.device_context().GetPlace());
C
chengduoZH 已提交
48
  }
C
chengduoZH 已提交
49 50 51 52 53 54
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
chengduoZH 已提交
55
 protected:
56
  phi::KernelKey GetExpectedKernelType(
C
chengduoZH 已提交
57
      const framework::ExecutionContext &ctx) const override {
58 59 60
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
                              ctx, framework::GradVarName("Out")),
                          ctx.device_context().GetPlace());
C
chengduoZH 已提交
61
  }
C
chengduoZH 已提交
62 63 64 65
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override {
C
chengduoZH 已提交
67 68
    AddInput(
        "X",
K
kexinzhao 已提交
69 70 71 72
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
73
    AddOutput("Out",
K
kexinzhao 已提交
74 75 76 77 78
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
79
    AddOutput("Mask",
K
kexinzhao 已提交
80 81 82 83 84 85
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
86

C
fix bug  
chengduoZH 已提交
87
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
88 89
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
90
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
91 92
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
93
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
94
    AddAttr<bool>(
C
chengduoZH 已提交
95
        "global_pooling",
C
chengduoZH 已提交
96
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
97
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
98
        .SetDefault(false);
99 100 101 102 103 104 105 106
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
K
kexinzhao 已提交
107 108 109
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
110
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
111
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
112 113
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
114
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
115
        "operator. "
C
chengduoZH 已提交
116
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
117
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
118
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
119 120

    AddComment(R"DOC(
K
kexinzhao 已提交
121 122
MaxPool2d Operator.

C
chengduoZH 已提交
123
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
124 125
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
126
number of channels, H is the height of the feature,
K
kexinzhao 已提交
127
and W is the width of the feature.
C
chengduoZH 已提交
128 129
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
130 131 132 133
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
134
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
135
  Output:
K
kexinzhao 已提交
136 137
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
138
  Where
K
kexinzhao 已提交
139
       $$
C
chengduoZH 已提交
140 141
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
142
       $$
143

144 145 146 147
  For adaptive = true:
       $$
       H_{out} = ksize[0]   W_{out} = ksize[1]
       $$
148

K
kexinzhao 已提交
149

C
chengduoZH 已提交
150 151 152 153 154 155
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
156
  void Make() override {
K
kexinzhao 已提交
157 158 159 160 161 162
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
163
    AddOutput("Out",
K
kexinzhao 已提交
164 165 166 167 168
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
169
    AddOutput("Mask",
K
kexinzhao 已提交
170 171 172 173 174 175
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
176

C
fix bug  
chengduoZH 已提交
177
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
178 179
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
180
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
181 182
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
183
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
184
    AddAttr<bool>(
C
chengduoZH 已提交
185
        "global_pooling",
K
kexinzhao 已提交
186
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
187
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
188
        .SetDefault(false);
189 190 191 192 193 194 195 196
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
197
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
198
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
199
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
200
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
201
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
202 203
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
204
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
205
        "height, width) of pooling operator. "
C
chengduoZH 已提交
206
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
207
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
208
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
209

C
chengduoZH 已提交
210
    AddComment(R"DOC(
K
kexinzhao 已提交
211 212
MaxPool3d Operator.

C
chengduoZH 已提交
213 214
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
215 216
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
217
width of the feature, respectively.
K
kexinzhao 已提交
218
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
219
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
220 221 222 223
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
224
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
225
  Output:
K
kexinzhao 已提交
226 227
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
228
  Where
K
kexinzhao 已提交
229
       $$
C
chengduoZH 已提交
230 231 232
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
233
       $$
234

235 236 237 238
  For adaptive = true:
       $$
       D_{out} = ksize[0]   H_{out} = ksize[1]   W_{out} = ksize[2]
       $$
K
kexinzhao 已提交
239

C
chengduoZH 已提交
240 241 242
)DOC");
  }
};
C
chengduoZH 已提交
243

244 245 246 247 248 249
template <typename T>
class MaxPoolWithIndexGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
250
  void Apply(GradOpPtr<T> op) const override {
251 252 253 254 255 256 257 258 259
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

Z
Zeng Jinle 已提交
260
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
261
    MaxPoolWithIndexOpGradNoNeedBufferVarsInferer, "X");
262

C
chengduoZH 已提交
263 264 265 266 267
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

F
From00 已提交
268 269 270 271 272 273 274
DECLARE_INFER_SHAPE_FUNCTOR(max_pool2d_with_index,
                            MaxPool2dWithIndexInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(max_pool2d_with_index_grad,
                            MaxPool2dWithIndexGradInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexGradInferMeta));

275 276
REGISTER_OPERATOR(max_pool2d_with_index,
                  ops::MaxPoolWithIndexOp,
277 278
                  ops::MaxPool2dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
F
From00 已提交
279 280
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>,
                  MaxPool2dWithIndexInferShapeFunctor);
281 282
REGISTER_OPERATOR(max_pool2d_with_index_grad,
                  ops::MaxPoolWithIndexOpGrad,
F
From00 已提交
283 284
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer,
                  MaxPool2dWithIndexGradInferShapeFunctor);
C
chengduoZH 已提交
285

F
From00 已提交
286 287 288 289 290 291
DECLARE_INFER_SHAPE_FUNCTOR(max_pool3d_with_index,
                            MaxPool3dWithIndexInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(max_pool3d_with_index_grad,
                            MaxPool3dWithIndexGradInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexGradInferMeta));
C
chengduoZH 已提交
292

293 294
REGISTER_OPERATOR(max_pool3d_with_index,
                  ops::MaxPoolWithIndexOp,
295 296
                  ops::MaxPool3dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
F
From00 已提交
297 298
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>,
                  MaxPool3dWithIndexInferShapeFunctor);
299 300
REGISTER_OPERATOR(max_pool3d_with_index_grad,
                  ops::MaxPoolWithIndexOpGrad,
F
From00 已提交
301 302
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer,
                  MaxPool3dWithIndexGradInferShapeFunctor);