pool_with_index_op.cc 15.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_with_index_op.h"
16
#include <memory>
C
chengduoZH 已提交
17 18 19 20

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
21
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
C
chengduoZH 已提交
22
                             int stride) {
C
chengduoZH 已提交
23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
31
  void InferShape(framework::InferShapeContext *ctx) const override {
32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of Pooling should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of Pooling should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Mask"), true,
                      platform::errors::InvalidArgument(
                          "Output(Mask) of Pooling should not be null."));
C
chengduoZH 已提交
41 42 43 44 45 46

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
47
    bool adaptive = ctx->Attrs().Get<bool>("adaptive");
C
chengduoZH 已提交
48 49

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
50
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
53
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
54 55
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
56
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
57
      }
C
chengduoZH 已提交
58 59
    }

60 61 62
    PADDLE_ENFORCE_EQ(in_x_dims.size() - ksize.size(), 2U,
                      platform::errors::InvalidArgument(
                          "Input size and pooling size should be consistent."));
C
chengduoZH 已提交
63
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
64 65 66 67 68 69
                      platform::errors::InvalidArgument(
                          "Strides size and pooling size should be the same."));
    PADDLE_ENFORCE_EQ(
        ksize.size(), paddings.size(),
        platform::errors::InvalidArgument(
            "Paddings size and pooling size should be the same."));
C
chengduoZH 已提交
70 71

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
72 73 74 75 76 77 78
    if (adaptive) {
      output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
    } else {
      for (size_t i = 0; i < ksize.size(); ++i) {
        output_shape.push_back(MaxPoolOutputSize(in_x_dims[i + 2], ksize[i],
                                                 paddings[i], strides[i]));
      }
C
chengduoZH 已提交
79 80 81 82
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
C
chengduoZH 已提交
83 84

 protected:
85
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
86
      const framework::ExecutionContext &ctx) const override {
87 88 89
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
C
chengduoZH 已提交
90
  }
C
chengduoZH 已提交
91 92 93 94 95 96
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
97
  void InferShape(framework::InferShapeContext *ctx) const override {
98 99
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Mask"), true,
100
        platform::errors::InvalidArgument("Input(Mask) must not be null."));
101
    PADDLE_ENFORCE_EQ(
102 103 104 105 106 107 108 109
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) must not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should not be null."));
C
chengduoZH 已提交
110 111
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
112 113

 protected:
114
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
115
      const framework::ExecutionContext &ctx) const override {
116 117 118
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
C
chengduoZH 已提交
119
  }
C
chengduoZH 已提交
120 121 122 123
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
124
  void Make() override {
C
chengduoZH 已提交
125 126
    AddInput(
        "X",
K
kexinzhao 已提交
127 128 129 130
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
131
    AddOutput("Out",
K
kexinzhao 已提交
132 133 134 135 136
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
137
    AddOutput("Mask",
K
kexinzhao 已提交
138 139 140 141 142 143
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
144

C
fix bug  
chengduoZH 已提交
145
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
146 147
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
148
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
149 150
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
151
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
152
    AddAttr<bool>(
C
chengduoZH 已提交
153
        "global_pooling",
C
chengduoZH 已提交
154
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
155
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
156
        .SetDefault(false);
157 158 159 160 161 162 163 164
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
K
kexinzhao 已提交
165 166 167
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
168
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
169
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
170 171
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
172
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
173
        "operator. "
C
chengduoZH 已提交
174
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
175
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
176
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
177 178

    AddComment(R"DOC(
K
kexinzhao 已提交
179 180
MaxPool2d Operator.

C
chengduoZH 已提交
181
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
182 183 184 185
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
186 187
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
188 189 190 191
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
192
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
193
  Output:
K
kexinzhao 已提交
194 195
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
196
  Where
K
kexinzhao 已提交
197
       $$
C
chengduoZH 已提交
198 199
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
200
       $$
201 202 203 204 205 206
  
  For adaptive = true:
       $$
       H_{out} = ksize[0]   W_{out} = ksize[1]
       $$
      
K
kexinzhao 已提交
207

C
chengduoZH 已提交
208 209 210 211 212 213
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
214
  void Make() override {
K
kexinzhao 已提交
215 216 217 218 219 220
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
221
    AddOutput("Out",
K
kexinzhao 已提交
222 223 224 225 226
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
227
    AddOutput("Mask",
K
kexinzhao 已提交
228 229 230 231 232 233
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
234

C
fix bug  
chengduoZH 已提交
235
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
236 237
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
238
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
239 240
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
241
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
242
    AddAttr<bool>(
C
chengduoZH 已提交
243
        "global_pooling",
K
kexinzhao 已提交
244
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
245
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
246
        .SetDefault(false);
247 248 249 250 251 252 253 254
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
255
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
256
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
257
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
258
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
259
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
260 261
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
262
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
263
        "height, width) of pooling operator. "
C
chengduoZH 已提交
264
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
265
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
266
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
267

C
chengduoZH 已提交
268
    AddComment(R"DOC(
K
kexinzhao 已提交
269 270
MaxPool3d Operator.

C
chengduoZH 已提交
271 272
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
273 274 275 276
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
277
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
278 279 280 281
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
282
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
283
  Output:
K
kexinzhao 已提交
284 285
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
286
  Where
K
kexinzhao 已提交
287
       $$
C
chengduoZH 已提交
288 289 290
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
291
       $$
292 293 294 295 296
  
  For adaptive = true:
       $$
       D_{out} = ksize[0]   H_{out} = ksize[1]   W_{out} = ksize[2]
       $$
K
kexinzhao 已提交
297

C
chengduoZH 已提交
298 299 300
)DOC");
  }
};
C
chengduoZH 已提交
301

302 303 304 305 306 307
template <typename T>
class MaxPoolWithIndexGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
308
  void Apply(GradOpPtr<T> op) const override {
309 310 311 312 313 314 315 316 317
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

Z
Zeng Jinle 已提交
318
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
319 320
    MaxPoolWithIndexOpGradNoNeedBufferVarsInference, "X");

C
chengduoZH 已提交
321 322 323 324 325
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

326 327 328 329
REGISTER_OPERATOR(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool2dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
330 331
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInference);
C
chengduoZH 已提交
332 333

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
334
    max_pool2d_with_index,
Q
QI JUN 已提交
335 336 337
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
338
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
339
    max_pool2d_with_index_grad,
Q
QI JUN 已提交
340 341 342
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
343
                                    int>);
C
chengduoZH 已提交
344

345 346 347 348
REGISTER_OPERATOR(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool3dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
349 350
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInference);
C
chengduoZH 已提交
351 352

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
353
    max_pool3d_with_index,
Q
QI JUN 已提交
354 355 356
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
357
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
358
    max_pool3d_with_index_grad,
Q
QI JUN 已提交
359 360 361
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
362
                                    int>);