test_uncombined_weight2state_dict.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import numpy as np
import shutil
import tempfile

from paddle import fluid
25
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential
26 27 28 29 30 31 32 33 34

from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict


class LeNetDygraph(fluid.dygraph.Layer):
    def __init__(self, num_classes=10, classifier_activation='softmax'):
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
35
            Conv2d(
36 37 38
                1, 6, 3, stride=1, padding=1),
            ReLU(),
            Pool2D(2, 'max', 2),
39
            Conv2d(
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                6, 16, 5, stride=1, padding=0),
            ReLU(),
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
                Linear(400, 120),
                Linear(120, 84),
                Linear(
                    84, 10, act=classifier_activation))

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


class TestUncombinedWeight2StateDict(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.save_dir = tempfile.mkdtemp()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_infer(self):
        start_prog = fluid.Program()
        train_prog = fluid.Program()

        x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')

        with fluid.program_guard(train_prog, start_prog):
            with fluid.unique_name.guard():
                x = fluid.data(
                    name='x', shape=[None, 1, 28, 28], dtype='float32')
                model = LeNetDygraph()
                output = model.forward(x)

        excutor = fluid.Executor()
        excutor.run(start_prog)

        test_prog = train_prog.clone(for_test=True)

        fluid.io.save_params(excutor, self.save_dir, test_prog)

        rand_x = np.random.rand(1, 1, 28, 28).astype('float32')
        out = excutor.run(program=test_prog,
                          feed={'x': rand_x},
                          fetch_list=[output.name],
                          return_numpy=True)

        state_dict = uncombined_weight_to_state_dict(self.save_dir)

        key2key_dict = {
            'features.0.weight': 'conv2d_0.w_0',
            'features.0.bias': 'conv2d_0.b_0',
            'features.3.weight': 'conv2d_1.w_0',
            'features.3.bias': 'conv2d_1.b_0',
            'fc.0.weight': 'linear_0.w_0',
            'fc.0.bias': 'linear_0.b_0',
            'fc.1.weight': 'linear_1.w_0',
            'fc.1.bias': 'linear_1.b_0',
            'fc.2.weight': 'linear_2.w_0',
            'fc.2.bias': 'linear_2.b_0'
        }

        fluid.enable_imperative()
        dygraph_model = LeNetDygraph()

        converted_state_dict = dygraph_model.state_dict()
        for k1, k2 in key2key_dict.items():
            converted_state_dict[k1] = state_dict[k2]

        dygraph_model.set_dict(converted_state_dict)

        dygraph_model.eval()
        dy_out = dygraph_model(fluid.dygraph.to_variable(rand_x))

        np.testing.assert_allclose(dy_out.numpy(), out[0], atol=1e-5)


if __name__ == '__main__':
    unittest.main()