Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ffcb6537
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ffcb6537
编写于
8月 05, 2020
作者:
L
LielinJiang
提交者:
GitHub
8月 05, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add uncombined_weight_to_state_dict api (#25649)
* add uncombined_weight_to_state_dict API
上级
a43b0d15
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
286 addition
and
0 deletion
+286
-0
python/paddle/incubate/hapi/__init__.py
python/paddle/incubate/hapi/__init__.py
+2
-0
python/paddle/incubate/hapi/tests/test_uncombined_weight2state_dict.py
.../incubate/hapi/tests/test_uncombined_weight2state_dict.py
+126
-0
python/paddle/incubate/hapi/utils.py
python/paddle/incubate/hapi/utils.py
+158
-0
未找到文件。
python/paddle/incubate/hapi/__init__.py
浏览文件 @
ffcb6537
...
...
@@ -25,6 +25,7 @@ from . import datasets
from
.
import
distributed
from
.
import
vision
from
.
import
text
from
.
import
utils
from
.
import
device
from
.device
import
*
...
...
@@ -41,6 +42,7 @@ __all__ = [
'metrics'
,
'vision'
,
'text'
,
'utils'
,
]
+
model
.
__all__
+
device
.
__all__
monkey_patch_layer
()
python/paddle/incubate/hapi/tests/test_uncombined_weight2state_dict.py
0 → 100644
浏览文件 @
ffcb6537
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
shutil
import
tempfile
from
paddle
import
fluid
from
paddle.nn
import
Conv2D
,
Pool2D
,
Linear
,
ReLU
,
Sequential
from
paddle.incubate.hapi.utils
import
uncombined_weight_to_state_dict
class
LeNetDygraph
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
=
10
,
classifier_activation
=
'softmax'
):
super
(
LeNetDygraph
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
features
=
Sequential
(
Conv2D
(
1
,
6
,
3
,
stride
=
1
,
padding
=
1
),
ReLU
(),
Pool2D
(
2
,
'max'
,
2
),
Conv2D
(
6
,
16
,
5
,
stride
=
1
,
padding
=
0
),
ReLU
(),
Pool2D
(
2
,
'max'
,
2
))
if
num_classes
>
0
:
self
.
fc
=
Sequential
(
Linear
(
400
,
120
),
Linear
(
120
,
84
),
Linear
(
84
,
10
,
act
=
classifier_activation
))
def
forward
(
self
,
inputs
):
x
=
self
.
features
(
inputs
)
if
self
.
num_classes
>
0
:
x
=
fluid
.
layers
.
flatten
(
x
,
1
)
x
=
self
.
fc
(
x
)
return
x
class
TestUncombinedWeight2StateDict
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
cls
.
save_dir
=
tempfile
.
mkdtemp
()
@
classmethod
def
tearDownClass
(
cls
):
shutil
.
rmtree
(
cls
.
save_dir
)
def
test_infer
(
self
):
start_prog
=
fluid
.
Program
()
train_prog
=
fluid
.
Program
()
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
with
fluid
.
program_guard
(
train_prog
,
start_prog
):
with
fluid
.
unique_name
.
guard
():
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
model
=
LeNetDygraph
()
output
=
model
.
forward
(
x
)
excutor
=
fluid
.
Executor
()
excutor
.
run
(
start_prog
)
test_prog
=
train_prog
.
clone
(
for_test
=
True
)
fluid
.
io
.
save_params
(
excutor
,
self
.
save_dir
,
test_prog
)
rand_x
=
np
.
random
.
rand
(
1
,
1
,
28
,
28
).
astype
(
'float32'
)
out
=
excutor
.
run
(
program
=
test_prog
,
feed
=
{
'x'
:
rand_x
},
fetch_list
=
[
output
.
name
],
return_numpy
=
True
)
state_dict
=
uncombined_weight_to_state_dict
(
self
.
save_dir
)
key2key_dict
=
{
'features.0.weight'
:
'conv2d_0.w_0'
,
'features.0.bias'
:
'conv2d_0.b_0'
,
'features.3.weight'
:
'conv2d_1.w_0'
,
'features.3.bias'
:
'conv2d_1.b_0'
,
'fc.0.weight'
:
'linear_0.w_0'
,
'fc.0.bias'
:
'linear_0.b_0'
,
'fc.1.weight'
:
'linear_1.w_0'
,
'fc.1.bias'
:
'linear_1.b_0'
,
'fc.2.weight'
:
'linear_2.w_0'
,
'fc.2.bias'
:
'linear_2.b_0'
}
fluid
.
enable_imperative
()
dygraph_model
=
LeNetDygraph
()
converted_state_dict
=
dygraph_model
.
state_dict
()
for
k1
,
k2
in
key2key_dict
.
items
():
converted_state_dict
[
k1
]
=
state_dict
[
k2
]
dygraph_model
.
set_dict
(
converted_state_dict
)
dygraph_model
.
eval
()
dy_out
=
dygraph_model
(
fluid
.
dygraph
.
to_variable
(
rand_x
))
np
.
testing
.
assert_allclose
(
dy_out
.
numpy
(),
out
[
0
],
atol
=
1e-5
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/hapi/utils.py
浏览文件 @
ffcb6537
...
...
@@ -12,13 +12,171 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
inspect
import
numpy
as
np
from
collections
import
OrderedDict
from
paddle
import
fluid
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.executor
import
global_scope
__all__
=
[
'uncombined_weight_to_state_dict'
]
def
uncombined_weight_to_state_dict
(
weight_dir
):
"""
Convert uncombined weight which getted by using `fluid.io.save_params` or `fluid.io.save_persistables` to state_dict
Args:
weight_dir (str): weight direcotory path.
Returns:
OrderDict: weight dict.
Examples:
.. code-block:: python
import os
from paddle import fluid
from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict
class LeNetDygraph(fluid.dygraph.Layer):
def __init__(self, num_classes=10, classifier_activation='softmax'):
super(LeNetDygraph, self).__init__()
self.num_classes = num_classes
self.features = Sequential(
Conv2D(
1, 6, 3, stride=1, padding=1),
ReLU(),
Pool2D(2, 'max', 2),
Conv2D(
6, 16, 5, stride=1, padding=0),
ReLU(),
Pool2D(2, 'max', 2))
if num_classes > 0:
self.fc = Sequential(
Linear(400, 120),
Linear(120, 84),
Linear(
84, 10, act=classifier_activation))
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.fc(x)
return x
# save weight use fluid.io.save_params
save_dir = 'temp'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
start_prog = fluid.Program()
train_prog = fluid.Program()
x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')
with fluid.program_guard(train_prog, start_prog):
with fluid.unique_name.guard():
x = fluid.data(
name='x', shape=[None, 1, 28, 28], dtype='float32')
model = LeNetDygraph()
output = model.forward(x)
excutor = fluid.Executor()
excutor.run(start_prog)
test_prog = train_prog.clone(for_test=True)
fluid.io.save_params(excutor, save_dir, test_prog)
# convert uncombined weight to state dict
state_dict = uncombined_weight_to_state_dict(save_dir)
key2key_dict = {
'features.0.weight': 'conv2d_0.w_0',
'features.0.bias': 'conv2d_0.b_0',
'features.3.weight': 'conv2d_1.w_0',
'features.3.bias': 'conv2d_1.b_0',
'fc.0.weight': 'linear_0.w_0',
'fc.0.bias': 'linear_0.b_0',
'fc.1.weight': 'linear_1.w_0',
'fc.1.bias': 'linear_1.b_0',
'fc.2.weight': 'linear_2.w_0',
'fc.2.bias': 'linear_2.b_0'
}
fluid.enable_imperative()
dygraph_model = LeNetDygraph()
converted_state_dict = dygraph_model.state_dict()
for k1, k2 in key2key_dict.items():
converted_state_dict[k1] = state_dict[k2]
# dygraph model load state dict which converted from uncombined weight
dygraph_model.set_dict(converted_state_dict)
"""
def
_get_all_params_name
(
dir
):
params_name
=
[]
dir
=
os
.
path
.
expanduser
(
dir
)
dir_len
=
len
(
dir
)
for
root
,
_
,
fnames
in
sorted
(
os
.
walk
(
dir
,
followlinks
=
True
)):
for
fname
in
sorted
(
fnames
):
path
=
os
.
path
.
join
(
root
[
dir_len
:],
fname
)
params_name
.
append
(
path
)
return
params_name
class
Load
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
):
super
(
Load
,
self
).
__init__
()
def
forward
(
self
,
filename
):
weight
=
self
.
create_parameter
(
shape
=
[
1
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
ConstantInitializer
(
0.0
))
self
.
_helper
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
weight
]},
attrs
=
{
'file_path'
:
filename
})
return
weight
params_name_list
=
_get_all_params_name
(
weight_dir
)
if
not
fluid
.
in_dygraph_mode
():
dygraph_enabled
=
False
fluid
.
enable_imperative
()
else
:
dygraph_enabled
=
True
load
=
Load
()
state_dict
=
OrderedDict
()
for
param_name
in
params_name_list
:
param_path
=
os
.
path
.
join
(
weight_dir
,
param_name
)
weight
=
load
(
param_path
)
try
:
weight
=
weight
.
numpy
()
except
Exception
as
e
:
print
(
e
)
state_dict
[
param_name
]
=
weight
if
not
dygraph_enabled
:
fluid
.
disable_imperative
()
return
state_dict
def
to_list
(
value
):
if
value
is
None
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录