multiplex_op.cc 4.1 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/multiplex_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class MultiplexOp : public framework::OperatorWithKernel {
 public:
24
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
25 26

 protected:
Q
Qiao Longfei 已提交
27 28 29
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null.");
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(),
30
                   "MultiInput(X) shouldn't be empty.");
Q
Qiao Longfei 已提交
31 32
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto ids_dim = ctx->GetInputDim("Ids");
33 34 35 36
    PADDLE_ENFORCE(
        ids_dim.size() == 2 && ids_dim[1] == 1,
        "The index tensor must be a vector with size batchSize x 1.");

Q
Qiao Longfei 已提交
37 38
    auto ins_dims = ctx->GetInputsDim("X");
    auto num_ins = ins_dims.size();
39 40 41
    PADDLE_ENFORCE(num_ins > 1,
                   "multiplex operator should have more than "
                   "one candidate input tensors.");
Y
Yibing Liu 已提交
42

Q
Qiao Longfei 已提交
43
    auto in_dim = ins_dims[0];
44 45
    PADDLE_ENFORCE(in_dim.size() >= 2,
                   "The rank of candidate tensors must be not less than 2.");
46
    for (size_t i = 1; i < num_ins; i++) {
Q
Qiao Longfei 已提交
47
      auto dim = ins_dims[i];
Y
Yibing Liu 已提交
48
      PADDLE_ENFORCE(in_dim == dim,
49
                     "All the candidate tensors must have the same size.");
Y
Yibing Liu 已提交
50
    }
Q
Qiao Longfei 已提交
51
    ctx->SetOutputDim("Out", in_dim);
Y
Yibing Liu 已提交
52 53 54 55 56
  }
};

class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
57 58
  MultiplexOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
Y
Yibing Liu 已提交
59
      : OpProtoAndCheckerMaker(proto, op_checker) {
60 61 62
    AddInput("Ids", "The index tensor of multiplex operator.");
    AddInput("X", "The candidate tensors of multiplex operator.")
        .AsDuplicable();
Y
Yibing Liu 已提交
63 64 65
    AddOutput("Out", "The output tensor of multiplex operator.");
    AddComment(R"DOC(Multiplex operator

66
Multiplex multiple tensors according to the index provided by the index tensor.
Y
Yibing Liu 已提交
67

68 69
Ids: the index tensor.
X[0 : N - 1]: the candidate tensors for output (N >= 2).
Y
Yibing Liu 已提交
70
For each index i from 0 to batchSize - 1, the output is the i-th row of the
71
the (Ids[i])-th tensor.
Y
Yibing Liu 已提交
72

73
For i-th row of the output tensor:
Y
Yibing Liu 已提交
74

75
y[i] = x_{k}[i]
Y
Yibing Liu 已提交
76

77
where y is the output tensor. `x_{k}` is the k-th input tensor
78
and `k = Ids[i]`.
Y
Yibing Liu 已提交
79 80 81 82 83 84
)DOC");
  }
};

class MultiplexGradOp : public framework::OperatorWithKernel {
 public:
85
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
86 87

 protected:
Q
Qiao Longfei 已提交
88 89 90
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null.");
    PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(),
Y
Yibing Liu 已提交
91
                   "Output(X@Grad) should not be null.");
Q
Qiao Longfei 已提交
92 93 94 95
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    std::vector<framework::DDim> d_ins;
    auto ins = ctx->GetInputsDim("X");
96 97
    // No need to compute gradient for Input(Ids)
    for (size_t i = 0; i < ins.size(); i++) {
Q
Qiao Longfei 已提交
98
      d_ins.push_back(ins[i]);
Y
Yibing Liu 已提交
99
    }
Q
Qiao Longfei 已提交
100
    ctx->SetOutputsDim(framework::GradVarName("X"), d_ins);
Y
Yibing Liu 已提交
101 102 103 104 105 106 107 108 109
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad,
            ops::MultiplexGradOp);
Y
Yibing Liu 已提交
110 111
REGISTER_OP_CPU_KERNEL(
    multiplex, ops::MultiplexCPUKernel<paddle::platform::CPUPlace, float>);
112 113
REGISTER_OP_CPU_KERNEL(
    multiplex_grad,
Y
Yibing Liu 已提交
114
    ops::MultiplexGradCPUKernel<paddle::platform::CPUPlace, float>);