Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b3f44ad7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b3f44ad7
编写于
9月 13, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multiplex operator
上级
4137cb0b
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
287 addition
and
0 deletion
+287
-0
paddle/operators/multiplex_op.cc
paddle/operators/multiplex_op.cc
+107
-0
paddle/operators/multiplex_op.cu
paddle/operators/multiplex_op.cu
+76
-0
paddle/operators/multiplex_op.h
paddle/operators/multiplex_op.h
+68
-0
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+1
-0
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/test_multiplex_op.py
python/paddle/v2/framework/tests/test_multiplex_op.py
+34
-0
未找到文件。
paddle/operators/multiplex_op.cc
0 → 100644
浏览文件 @
b3f44ad7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/multiplex_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
MultiplexOp
:
public
framework
::
OperatorWithKernel
{
public:
MultiplexOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
num_ins
=
ins
.
size
();
PADDLE_ENFORCE
(
num_ins
>
2
,
"multiplex operator should have more than 2 inputs."
);
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
dims
().
size
(),
1
,
"The first input must be a index vector."
);
auto
in_dim
=
ins
[
1
]
->
dims
();
for
(
size_t
i
=
2
;
i
<
num_ins
;
i
++
)
{
auto
dim
=
ins
[
i
]
->
dims
();
PADDLE_ENFORCE
(
in_dim
==
dim
,
"All the input tensors except the first one must have the same size"
);
}
out
->
Resize
(
in_dim
);
}
};
class
MultiplexOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MultiplexOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of multiplex operator."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"The output tensor of multiplex operator."
);
AddComment
(
R"DOC(Multiplex operator
Multiplex multiple tensors according to the index provided by the first
input tensor.
ins[0]: the index of the tensor to output of size batchSize.
ins[1:N]: the candidate output tensor.
For each index i from 0 to batchSize - 1, the output is the i-th row of the
the (index[i] + 1)-th tensor.
For each i-th row of output:
y[i][j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1)
where y is the output tensor. `x_{k}` is the k-th input layer
and `k = x{0}[i] + 1`.
)DOC"
);
}
};
class
MultiplexGradOp
:
public
framework
::
OperatorWithKernel
{
public:
MultiplexGradOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
d_ins
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
auto
dims
=
ins
[
i
]
->
dims
();
d_ins
[
i
]
->
Resize
(
dims
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
multiplex
,
ops
::
MultiplexOp
,
ops
::
MultiplexOpMaker
,
multiplex_grad
,
ops
::
MultiplexGradOp
);
REGISTER_OP_CPU_KERNEL
(
multiplex
,
ops
::
MultiplexCPUKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
multiplex_grad
,
ops
::
MultiplexGradCPUKernel
<
float
>
);
paddle/operators/multiplex_op.cu
0 → 100644
浏览文件 @
b3f44ad7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
MultiplexGPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
];
// copy index to cpu
Tensor
index_t_cpu
;
index_t_cpu
.
CopyFrom
<
T
>
(
*
(
ins
[
0
]),
paddle
::
platform
::
CPUPlace
());
auto
index
=
index_t_cpu
.
data
<
T
>
();
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
cudaMemcpy
(
out
->
data
<
T
>
()
+
i
*
cols
,
ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
),
cudaMemcpyDeviceToDevice
);
}
}
};
template
<
typename
T
>
class
MultiplexGradGPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
d_ins
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
for
(
auto
d_in
:
d_ins
)
{
d_in
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dims
=
d_in
->
dims
();
cudaMemset
(
d_in
->
data
<
T
>
(),
0
,
framework
::
product
(
dims
)
*
sizeof
(
T
));
}
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
];
// copy index to cpu
Tensor
index_t_cpu
;
index_t_cpu
.
CopyFrom
<
T
>
(
*
(
ins
[
0
]),
paddle
::
platform
::
CPUPlace
());
auto
index
=
index_t_cpu
.
data
<
T
>
();
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
cudaMemcpy
(
d_ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
d_out
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
),
cudaMemcpyDeviceToDevice
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
multiplex
,
ops
::
MultiplexGPUKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
multiplex_grad
,
ops
::
MultiplexGradGPUKernel
<
float
>
);
paddle/operators/multiplex_op.h
0 → 100644
浏览文件 @
b3f44ad7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
MultiplexCPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
index
=
ins
[
0
]
->
data
<
T
>
();
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
];
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
memcpy
(
out
->
data
<
T
>
()
+
i
*
cols
,
ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
));
}
}
};
template
<
typename
T
>
class
MultiplexGradCPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
d_ins
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
for
(
auto
d_in
:
d_ins
)
{
d_in
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dims
=
d_in
->
dims
();
memset
(
d_in
->
data
<
T
>
(),
0
,
framework
::
product
(
dims
)
*
sizeof
(
T
));
}
auto
index
=
ins
[
0
]
->
data
<
T
>
();
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
];
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
memcpy
(
d_ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
d_out
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
));
}
}
};
}
}
paddle/pybind/pybind.cc
浏览文件 @
b3f44ad7
...
...
@@ -55,6 +55,7 @@ USE_OP(top_k);
USE_OP
(
squared_l2_distance
);
USE_OP
(
sum
);
USE_OP
(
reshape
);
USE_OP
(
multiplex
);
namespace
paddle
{
namespace
framework
{
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
b3f44ad7
...
...
@@ -36,3 +36,4 @@ py_test(mnist SRCS mnist.py)
py_test
(
test_concat_op SRCS test_concat_op.py
)
py_test
(
test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py
)
py_test
(
test_reshape_op SRCS test_reshape_op.py
)
py_test
(
test_multiplex_op SRCS test_multiplex_op.py
)
python/paddle/v2/framework/tests/test_multiplex_op.py
0 → 100644
浏览文件 @
b3f44ad7
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestMultiplexOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"multiplex"
rows
=
3
index
=
np
.
array
([
3
,
1
,
0
])
ins1
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
ins2
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
ins3
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
ins4
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
[(
'index'
,
index
),
(
'x1'
,
ins1
),
(
'x2'
,
ins2
),
(
'x3'
,
ins3
),
(
'x4'
,
ins4
)]
}
# multiplex output
output
=
np
.
zeros_like
(
ins1
)
for
i
in
range
(
0
,
rows
):
k
=
index
[
i
]
+
1
output
[
i
]
=
self
.
inputs
[
'X'
][
k
][
1
][
i
]
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"x1"
],
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录