nce_op.h 17.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
W
wanghaoshuang 已提交
52
  // for unitest
W
wanghaoshuang 已提交
53 54
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
55 56 57

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
58
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
59
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
60 61

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
62
  int index = 0;
63
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
64 65
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
66
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
67
    }
W
wanghaoshuang 已提交
68 69
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
70 71 72 73
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
74
        // TODO(wanghaoshuang): support more distribution sampling
75
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
76
      }
W
wanghaoshuang 已提交
77 78 79 80
    }
  }
}

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82 83
class NCEKernel : public framework::OpKernel<T> {
 public:
84
  void Compute(const framework::ExecutionContext &context) const override {
85 86 87 88 89
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

90
    Sampler *sampler;
91 92 93 94 95 96 97 98 99 100
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
101 102 103 104
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        PADDLE_ENFORCE_EQ(
            dist_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistProbs).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAlias) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAlias).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAliasProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAliasProbs).numel() = %d, "
            "Attr(num_total_classes) = %d.",
            dist_alias_probs->numel(), num_total_classes);
126 127 128 129 130 131

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
132 133 134 135 136 137
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
138
    auto sample_labels = context.Output<Tensor>("SampleLabels");
139
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
140 141

    for (int x = 0; x < sample_labels->numel(); x++) {
142 143 144 145 146
      PADDLE_ENFORCE_GE(sample_labels_data[x], 0,
                        "ValueError: Every sample label should be "
                        "non-negative. But received: "
                        "Input(SampleLabels)[%d] = %d",
                        x, sample_labels_data[x]);
147 148
    }

W
wanghaoshuang 已提交
149
    auto sample_out = context.Output<Tensor>("SampleLogits");
150
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
151 152
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
153
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
154 155 156
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
157
    auto out = context.Output<Tensor>("Cost");
158
    T *out_data = out->mutable_data<T>(context.GetPlace());
159
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
160 161 162
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
163 164
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
165
    // forward bias
W
wanghaoshuang 已提交
166
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
167
    if (bias != nullptr) {
168
      const T *bias_data = bias->data<T>();
169
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
170 171 172
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
173
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
174 175 176 177
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
178
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
179 180

    // for remote prefetch
181
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
T
tangwei12 已提交
182 183
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

184
    if (remote_prefetch && !epmap.empty()) {
T
tangwei12 已提交
185 186 187 188 189 190 191 192 193 194 195
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

T
tangwei12 已提交
196 197
      framework::Scope &local_scope = context.scope().NewScope();

T
tangwei12 已提交
198 199
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
200
      auto *ids = local_scope.Var("Ids@Prefetch");
T
tangwei12 已提交
201 202 203 204 205 206 207 208
      auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
      x_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
          context.GetPlace());
      // copy.
      std::memcpy(x_tensor->data<int64_t>(), labels.data(),
                  labels.size() * sizeof(int64_t));

209
      std::vector<int> w_dims = paddle::framework::vectorize<int>(
T
tangwei12 已提交
210 211 212 213 214 215
          context.Input<Tensor>("Weight")->dims());
      w_dims[0] = static_cast<int>(labels.size());

      auto *w_tensor = local_scope.Var("Weight@Prefetch")
                           ->GetMutable<framework::LoDTensor>();
      w_tensor->Resize(framework::make_ddim(w_dims));
T
tangwei12 已提交
216 217

#ifdef PADDLE_WITH_DISTRIBUTE
H
hong 已提交
218
      auto weight = context.InputNames("Weight").front();
T
tangwei12 已提交
219
      operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
220
                                       weight, false, table_names, epmap,
221
                                       context, local_scope);
T
tangwei12 已提交
222 223 224 225
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
T
tangwei12 已提交
226
#endif
T
tangwei12 已提交
227

T
tangwei12 已提交
228
      auto weight_mat = EigenMatrix<T>::From(
T
tangwei12 已提交
229
          (local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
T
tangwei12 已提交
230 231 232 233 234 235 236 237 238 239 240 241
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
242
      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
243 244 245 246 247 248 249 250 251 252 253
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
254
    }
T
tangwei12 已提交
255

W
wanghaoshuang 已提交
256
    // forward cost
257
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
258 259
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
260 261 262 263 264
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
265 266 267
        out_data[i] += w * cost;
      }
    }
268
    delete sampler;
W
wanghaoshuang 已提交
269 270 271
  }
};

Q
QI JUN 已提交
272
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
273 274
class NCEGradKernel : public framework::OpKernel<T> {
 public:
275
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
276
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
277
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
278 279
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
280
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
281
    auto sample_labels = context.Input<Tensor>("SampleLabels");
282
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
283
    auto sample_weight = context.Input<Tensor>("SampleWeight");
284
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
285 286 287
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
288 289
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
290 291 292 293
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
294 295 296

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
297
    Sampler *sampler;
298 299 300 301 302 303 304 305 306 307
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
308 309 310 311
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        PADDLE_ENFORCE_EQ(
            dist_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistProbs).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAlias) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAlias).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAliasProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAliasProbs).numel() = %d, "
            "Attr(num_total_classes) = %d.",
            dist_alias_probs->numel(), num_total_classes);
333 334 335 336 337 338

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
339 340 341 342 343 344
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
345
    Tensor sample_grad;  // tmp tensor
346
    T *sample_grad_data =
W
wanghaoshuang 已提交
347 348
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
349
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
350 351 352
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
353
      T o = sample_out_data[i];
354 355
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
356 357
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
358
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
359
    }
360

361 362 363 364 365 366 367 368 369 370
    // get d_bias
    auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
    if (d_bias != nullptr) {
      T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
      }
    }

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
389
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
390
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
391
      }
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
420
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
421
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
422
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
423
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
424 425 426
            sample_grad_data[i];
      }
    }
427

W
wanghaoshuang 已提交
428
    // get d_x
W
wanghaoshuang 已提交
429
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
430
    if (d_x != nullptr) {
431
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
432
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
433
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
434
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
435
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
436
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
437 438 439
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
440

441
    delete sampler;
W
wanghaoshuang 已提交
442 443 444 445
  }
};
}  // namespace operators
}  // namespace paddle