distribute_transpiler.py 48.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19

import distributed_splitter as splitter
20
from .. import core
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
28 29


T
typhoonzero 已提交
30 31 32 33 34 35
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
36

T
typhoonzero 已提交
37 38
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
39 40


41
class UnionFind(object):
42
    """ Union-find data structure.
43

44
    Union-find is a data structure that keeps track of a set of elements partitioned
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
96 97 98 99 100
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
101
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
102 103
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
104

T
typhoonzero 已提交
105 106
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
107 108
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
109 110
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
129
        # update split_count after aligning
T
typhoonzero 已提交
130 131 132 133 134 135 136 137 138
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


139 140 141 142 143 144 145 146 147 148
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


T
done  
typhoonzero 已提交
149 150
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
151
                  trainer_id,
T
done  
typhoonzero 已提交
152 153 154
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
155 156
                  split_method=splitter.round_robin,
                  sync_mode=True):
T
done  
typhoonzero 已提交
157
        """
T
typhoonzero 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
195
        """
T
typhoonzero 已提交
196
        assert (callable(split_method))
T
done  
typhoonzero 已提交
197 198
        if program is None:
            program = default_main_program()
199 200
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
201
        self.sync_mode = sync_mode
T
typhoonzero 已提交
202 203 204 205
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
206
        pserver_endpoints = pservers.split(",")
207
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
208
        self.optimize_ops, params_grads = self._get_optimize_pass()
209

T
tangwei12 已提交
210 211 212 213 214
        # is_chief (no.0 triner) for checkpoint
        # the no.0 trainer will save all variables and its own reader offset to checkpoint
        # other trianers will save its own reader offset to checkpoint
        self.is_chief = trainer_id == 0

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
236

237 238
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
239 240 241 242 243 244 245 246
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
247 248 249 250 251 252 253

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
254
                if grad.name != grad_var_name(self.table_name)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
271 272
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
273 274
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
275
        grad_var_mapping = self._append_split_op(program, grad_blocks)
276 277 278 279
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
280
        send_inputs = []
T
typhoonzero 已提交
281
        send_outputs = []
T
typhoonzero 已提交
282 283 284 285 286 287
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
288 289
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
290
        eplist = split_method(send_inputs, pserver_endpoints)
291
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
292 293 294 295 296 297 298 299
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
300

T
typhoonzero 已提交
301
        rpc_client_var = program.global_block().create_var(
302
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
303
            persistable=True,
T
typhoonzero 已提交
304
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
305

306
        # create send_op
T
typhoonzero 已提交
307
        program.global_block().append_op(
T
typhoonzero 已提交
308 309
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
310 311
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
312 313 314 315 316
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
T
tangwei12 已提交
317 318 319 320 321

        program.global_block().append_op(
            type="checkpoint_save",
            inputs={"X": send_outputs},
            attrs={"overwrite": True,
T
tangwei12 已提交
322
                   "dir": "/workspace/ckpt/"})
T
tangwei12 已提交
323

324
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
325
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
326 327
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
328
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
329
            program.global_block().append_op(
T
typhoonzero 已提交
330
                type="concat",
T
typhoonzero 已提交
331
                inputs={"X": splited_var},
T
typhoonzero 已提交
332
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
333
                attrs={"axis": 0})
T
typhoonzero 已提交
334

335 336 337 338 339 340
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
341 342
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
343
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
344
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
345 346
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
347 348 349 350

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
351
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
352 353 354 355 356 357
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
358
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
359 360 361 362 363 364 365 366
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
367 368 369 370 371 372

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
373 374 375 376 377 378 379 380 381
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
382
            if self.sync_mode and self.trainer_num > 1:
383
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
384 385 386 387 388 389 390 391 392
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
393

Q
qiaolongfei 已提交
394
        # step 3
395
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
396 397 398
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
399
        # step 3.2
T
typhoonzero 已提交
400 401 402 403 404 405
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
406
        # step 3.3
T
typhoonzero 已提交
407
        # Iterate through the ops, and if an op and the optimize ops
408
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
409
        # append it into the sub program.
T
typhoonzero 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
426 427
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
428

Q
qiaolongfei 已提交
429
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
430
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
431
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
432 433 434 435
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

436
        # append lr decay ops to the child block if exists
437 438
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
439 440
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
441
            for _, op in enumerate(lr_ops):
442
                self._append_pserver_non_opt_ops(lr_decay_block, op)
443

T
typhoonzero 已提交
444
        # append op to the current block
Q
qiaolongfei 已提交
445
        grad_to_block_id = []
Q
qiaolongfei 已提交
446
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
447
        for idx, opt_op in enumerate(opt_op_on_pserver):
448
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
449 450
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
451
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
452
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
453 454

        # append global ops
455
        if global_ops:
Q
qiaolongfei 已提交
456 457 458
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
459 460
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
461 462 463 464 465 466 467 468 469

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

470 471 472 473
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
474
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
475
                pserver_index, pserver_program, pre_block_idx)
476
            prefetch_block = self._create_prefetch_block(
477
                pserver_index, pserver_program, table_opt_block)
478 479 480 481 482 483 484 485 486

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
487 488 489 490 491 492
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
493
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
494
                "endpoint": endpoint,
495
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
496 497
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
T
tangwei12 已提交
498
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
499
            })
500

T
typhoonzero 已提交
501 502 503 504 505 506 507 508 509 510
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
511
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
525
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
627
                    delete_ops(program.global_block(), [op])
628 629 630 631 632 633 634 635
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
636
        table_grad_name = grad_var_name(self.table_name)
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
675
            type="lookup_sparse_table",
676 677 678 679 680 681 682 683 684 685 686
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
687
                                     pre_block_idx):
688 689 690 691 692 693 694 695 696 697 698
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
699 700 701 702 703 704 705 706
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
707 708
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
709
            self.origin_program.global_block().vars[grad_var_name(
710 711 712 713 714 715 716 717
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
718
        table_opt_block = pserver_program.create_block(pre_block_idx)
719 720 721
        # only support sgd now
        assert table_opt_op.type == "sgd"

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

755 756
        return table_opt_block

T
typhoonzero 已提交
757 758 759 760 761 762
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
763
        Create vars for each split.
T
typhoonzero 已提交
764 765
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
766
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
767
        """
T
typhoonzero 已提交
768
        block_map = dict()
T
typhoonzero 已提交
769
        var_mapping = dict()
T
typhoonzero 已提交
770 771 772 773 774 775
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
776
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
777
            if len(splited) == 1:
778
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
779 780 781 782 783 784 785 786
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
787
                continue
T
typhoonzero 已提交
788 789

            var_mapping[varname] = []
T
typhoonzero 已提交
790 791 792 793
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
794

T
typhoonzero 已提交
795
            for i, block in enumerate(splited):
T
typhoonzero 已提交
796
                size = block[1]
T
typhoonzero 已提交
797 798 799 800
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
801
                new_var_name = ""
802
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
803 804 805 806 807
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
808
                var = program.global_block().create_var(
T
typhoonzero 已提交
809 810
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
811
                    dtype=orig_var.dtype,
812
                    type=orig_var.type,
T
typhoonzero 已提交
813
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
814
                var_mapping[varname].append(var)
T
typhoonzero 已提交
815
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
816
        return var_mapping
T
done  
typhoonzero 已提交
817

818 819 820 821 822 823 824 825 826 827 828
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
829 830 831 832 833 834 835
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
836
            persistable=persistable)
T
done  
typhoonzero 已提交
837

T
typhoonzero 已提交
838
    def _append_split_op(self, program, gradblocks):
839
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
840
        add_suffix = False
841
        if self.trainer_num > 1:
T
typhoonzero 已提交
842
            add_suffix = True
T
typhoonzero 已提交
843
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
844
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
845
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
846 847
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
848
                continue
T
typhoonzero 已提交
849
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
850
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
851 852 853 854 855 856 857 858
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
859
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
860 861 862 863
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
864
                    type="split_byref",
865 866 867 868 869 870 871
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
872
        return var_mapping
T
done  
typhoonzero 已提交
873

T
typhoonzero 已提交
874 875 876 877
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
878
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
901 902 903 904 905
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
906 907
        else:
            orig_var_name = varname
T
typhoonzero 已提交
908 909
        return orig_var_name

910
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
911
                            grad_to_block_id, origin_program):
912
        program = optimize_block.program
T
typhoonzero 已提交
913
        pserver_block = program.global_block()
T
typhoonzero 已提交
914
        new_inputs = dict()
T
typhoonzero 已提交
915 916
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
917
        for key in opt_op.input_names:
T
typhoonzero 已提交
918 919 920
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
921
                    if same_or_split_var(
T
typhoonzero 已提交
922 923
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
924 925 926 927 928 929
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
930 931
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
932 933
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
934
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
935
                    vars2merge = []
936
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
937 938 939 940
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

941
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
942 943 944
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
945
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
946 947 948 949 950
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
951
                            attrs={"scale": 1.0 / float(self.trainer_num)})
952

T
typhoonzero 已提交
953 954 955 956 957
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
958
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
959 960 961 962
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
963
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
964
                    name=param_block.name,
T
typhoonzero 已提交
965
                    persistable=True,
T
typhoonzero 已提交
966 967 968
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
969
            elif key == "LearningRate":
970
                # learning rate variable has already be created by non-optimize op,
971
                # don't create it once again.
972 973 974 975 976 977 978 979 980 981 982
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
983

T
typhoonzero 已提交
984
        for key in opt_op.input_names:
985 986
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
987
                continue
988
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
989 990 991 992
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
993
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
994 995 996 997 998
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
999

1000
        # change output's ParamOut variable
1001 1002
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1003
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1004

1005
        optimize_block.append_op(
T
typhoonzero 已提交
1006 1007
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1008
            outputs=outputs,
T
typhoonzero 已提交
1009 1010
            attrs=opt_op.attrs)

1011 1012
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1013
        # Append the ops for parameters that do not need to be optimized/updated
1014 1015
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1016 1017 1018 1019
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1020
            for var in varlist:
1021 1022
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1023 1024 1025 1026 1027
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1028 1029
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1030

1031 1032 1033 1034 1035
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1036
                program.global_block().clone_variable(var)
1037

1038
        optimize_block.append_op(
T
typhoonzero 已提交
1039
            type=opt_op.type,
T
typhoonzero 已提交
1040 1041
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1042 1043
            attrs=opt_op.attrs)

1044 1045 1046 1047
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1061 1062
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1063
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1064
        op2_output_names = op2.desc.output_arg_names()
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1084
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1085 1086
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1087 1088 1089 1090 1091 1092 1093
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1094
        if op.input("Param")[0] in param_names:
1095 1096 1097
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1098
                param = op.input("Param")[0]
T
typhoonzero 已提交
1099
                if same_or_split_var(n, param) and n != param:
1100 1101 1102
                    return True
            return False

T
typhoonzero 已提交
1103
    def _get_input_map_from_op(self, varmap, op):
1104
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1117
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1139
        block = self.origin_program.global_block()
1140 1141 1142 1143 1144
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1158 1159
                    # we only need to append op for once
                    break
1160
        return lr_ops
Y
Yancey1989 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1173 1174
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1175 1176 1177
            else:
                pass
        return opt_ops, params_grads
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False