math_function_impl.h 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17 18 19 20 21 22
#include "paddle/framework/data_type.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

Q
QI JUN 已提交
23 24 25 26
template <typename DeviceContext, typename T>
void SetConstant<DeviceContext, T>::operator()(const DeviceContext& context,
                                               framework::Tensor* tensor,
                                               T num) {
27
  auto t = framework::EigenVector<T>::Flatten(*tensor);
Q
QI JUN 已提交
28
  t.device(*context.eigen_device()) = t.constant(static_cast<T>(num));
29 30
}

Q
QI JUN 已提交
31 32 33
template <typename DeviceContext, typename T, int Rank>
void Transpose<DeviceContext, T, Rank>::operator()(
    const DeviceContext& context, const framework::Tensor& in,
34 35 36 37 38 39 40 41 42 43
    framework::Tensor* out, const std::vector<int>& axis) {
  Eigen::array<int, Rank> permute;
  for (int i = 0; i < Rank; i++) {
    permute[i] = axis[i];
  }
  auto in_dim = in.dims();
  auto out_dim = out->dims();

  auto eigen_in = framework::EigenTensor<T, Rank>::From(in);
  auto eigen_out = framework::EigenTensor<T, Rank>::From(*out);
Q
QI JUN 已提交
44
  auto* dev = context.eigen_device();
45 46
  eigen_out.device(*dev) = eigen_in.shuffle(permute);
}
47

Q
QI JUN 已提交
48 49 50 51 52
template <typename DeviceContext, typename T>
void RowwiseAdd<DeviceContext, T>::operator()(const DeviceContext& context,
                                              const framework::Tensor& input,
                                              const framework::Tensor& vector,
                                              framework::Tensor* output) {
53 54 55 56 57 58 59 60 61 62
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector.numel(), size);
  PADDLE_ENFORCE_EQ(output->dims(), in_dims);

  auto in = framework::EigenMatrix<T>::From(input);
  auto vec = framework::EigenMatrix<T>::From(vector);
  auto out = framework::EigenMatrix<T>::From(*output);
  Eigen::array<int, 2> shape({{1, static_cast<int>(size)}});
  Eigen::array<int, 2> bcast({{static_cast<int>(in_dims[0]), 1}});
Q
QI JUN 已提交
63
  out.device(*context.eigen_device()) =
64
      in + vec.reshape(shape).broadcast(bcast);
65
}
66

Q
QI JUN 已提交
67 68 69
template <typename DeviceContext, typename T>
void ColwiseSum<DeviceContext, T>::operator()(const DeviceContext& context,
                                              const framework::Tensor& input,
Y
Yu Yang 已提交
70
                                              framework::Tensor* out) {
71 72
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
Y
Yu Yang 已提交
73
  PADDLE_ENFORCE_EQ(out->numel(), size);
74 75

  auto in = framework::EigenMatrix<T>::From(input);
Y
Yu Yang 已提交
76 77 78
  auto vec = framework::EigenVector<T>::Flatten(*out);

  vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{0}}));
79
}
80

Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
// Specialize for CPU, since Eigen implement a general reduce. However,
// colwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
class ColwiseSum<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    auto& in_dims = input.dims();
    auto height = in_dims[0];
    auto size = in_dims[1];
    PADDLE_ENFORCE_EQ(out->numel(), size);

    T* out_buf = out->mutable_data<T>(out->place());
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < height; ++i) {
      for (size_t j = 0; j < size; ++j) {
        if (i == 0) {
          out_buf[j] = in_buf[i * size + j];
        } else {
          out_buf[j] += in_buf[i * size + j];
        }
      }
    }
  }
};

109 110 111
}  // namespace math
}  // namespace operators
}  // namespace paddle