math_function_impl.h 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17 18 19 20 21 22
#include "paddle/framework/data_type.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

Q
QI JUN 已提交
23 24 25 26
template <typename DeviceContext, typename T>
void SetConstant<DeviceContext, T>::operator()(const DeviceContext& context,
                                               framework::Tensor* tensor,
                                               T num) {
27
  auto t = framework::EigenVector<T>::Flatten(*tensor);
Q
QI JUN 已提交
28
  t.device(*context.eigen_device()) = t.constant(static_cast<T>(num));
29 30
}

Q
QI JUN 已提交
31 32 33
template <typename DeviceContext, typename T, int Rank>
void Transpose<DeviceContext, T, Rank>::operator()(
    const DeviceContext& context, const framework::Tensor& in,
34 35 36 37 38 39 40 41 42 43
    framework::Tensor* out, const std::vector<int>& axis) {
  Eigen::array<int, Rank> permute;
  for (int i = 0; i < Rank; i++) {
    permute[i] = axis[i];
  }
  auto in_dim = in.dims();
  auto out_dim = out->dims();

  auto eigen_in = framework::EigenTensor<T, Rank>::From(in);
  auto eigen_out = framework::EigenTensor<T, Rank>::From(*out);
Q
QI JUN 已提交
44
  auto* dev = context.eigen_device();
45 46
  eigen_out.device(*dev) = eigen_in.shuffle(permute);
}
47

Q
QI JUN 已提交
48 49 50 51 52
template <typename DeviceContext, typename T>
void RowwiseAdd<DeviceContext, T>::operator()(const DeviceContext& context,
                                              const framework::Tensor& input,
                                              const framework::Tensor& vector,
                                              framework::Tensor* output) {
53 54 55 56 57 58 59 60 61 62
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector.numel(), size);
  PADDLE_ENFORCE_EQ(output->dims(), in_dims);

  auto in = framework::EigenMatrix<T>::From(input);
  auto vec = framework::EigenMatrix<T>::From(vector);
  auto out = framework::EigenMatrix<T>::From(*output);
  Eigen::array<int, 2> shape({{1, static_cast<int>(size)}});
  Eigen::array<int, 2> bcast({{static_cast<int>(in_dims[0]), 1}});
Q
QI JUN 已提交
63
  out.device(*context.eigen_device()) =
64
      in + vec.reshape(shape).broadcast(bcast);
65
}
66

Q
QI JUN 已提交
67 68 69 70
template <typename DeviceContext, typename T>
void ColwiseSum<DeviceContext, T>::operator()(const DeviceContext& context,
                                              const framework::Tensor& input,
                                              framework::Tensor* vector) {
71 72 73 74 75 76 77
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(), size);

  auto vec = framework::EigenMatrix<T>::From(*vector);
  auto in = framework::EigenMatrix<T>::From(input);
  Eigen::array<int, 2> shape({{1, static_cast<int>(size)}});
Q
QI JUN 已提交
78
  vec.reshape(shape).device(*context.eigen_device()) =
79
      in.sum(Eigen::array<int, 1>({{0}})).reshape(shape);
80
}
81 82 83 84

}  // namespace math
}  // namespace operators
}  // namespace paddle