all_to_all.py 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.distributed as dist
17
from paddle import framework
18 19 20 21
from paddle.distributed.communication.group import (
    _get_global_group,
    _warn_cur_rank_not_in_group,
)
22
from paddle.fluid import data_feeder
23 24 25 26 27 28


def _all_to_all_tensor_in_dygraph(
    out_tensor, in_tensor, group, sync_op, use_calc_stream
):
    if use_calc_stream:
L
LiYuRio 已提交
29
        return group.process_group.all_to_all_tensor_on_calc_stream(
30 31 32
            in_tensor, out_tensor
        )

L
LiYuRio 已提交
33
    task = group.process_group.all_to_all_tensor(in_tensor, out_tensor, sync_op)
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    if sync_op:
        task.wait()

    return task


def _all_to_all_in_dygraph(
    out_tensor_list, in_tensor_list, group, sync_op, use_calc_stream
):
    if len(in_tensor_list) == 0:
        raise RuntimeError("The input tensor_list should not be empty.")

    if len(out_tensor_list) == 0:
        out_tensor_list += [
            paddle.empty_like(tensor) for tensor in in_tensor_list
        ]

    if use_calc_stream:
L
LiYuRio 已提交
52
        return group.process_group.all_to_all_on_calc_stream(
53
            out_tensor_list, in_tensor_list
54 55
        )

L
LiYuRio 已提交
56
    task = group.process_group.all_to_all(
57
        out_tensor_list, in_tensor_list, sync_op
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    )
    if sync_op:
        task.wait()

    return task


def _all_to_all_in_static_mode(
    out_tensor_or_tensor_list,
    in_tensor_or_tensor_list,
    group,
    sync_op,
    use_calc_stream,
):
    op_type = 'alltoall'
    ring_id = 0 if group is None else group.id
    nranks = dist.get_world_size()
75
    helper = framework.LayerHelper(op_type, **locals())
76 77 78 79 80

    in_tensor = in_tensor_or_tensor_list
    if isinstance(in_tensor_or_tensor_list, list):
        if len(in_tensor_or_tensor_list) == 0:
            raise RuntimeError("The input tensor_list should not be empty.")
81
        # 0-D use stack/unstack while others use concat/split
82 83 84 85 86
        if len(in_tensor_or_tensor_list[0].shape) == 0:
            in_tensor = paddle.stack(in_tensor_or_tensor_list, axis=0)
        else:
            in_tensor = paddle.concat(in_tensor_or_tensor_list, axis=0)

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    out_tensor = out_tensor_or_tensor_list
    if isinstance(out_tensor_or_tensor_list, list):
        if len(out_tensor_or_tensor_list) != 0:
            raise ValueError(
                "The 'out_tensor_list' for all_to_all " "must be an empty list."
            )
        out_tensor = helper.create_variable_for_type_inference(
            dtype=in_tensor.dtype
        )

    data_feeder.check_variable_and_dtype(
        in_tensor,
        'in_tensor',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_to_all',
    )
    helper.append_op(
        type=op_type,
        inputs={'X': [in_tensor]},
        outputs={'Out': [out_tensor]},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': sync_op,
        },
    )
    # NOTE(liyurui): If the argument `out_tensor_or_tensor_list` is a tensor_list,
    # we need to split the result. So we should wait the result of all_to_all
    # before split if the communication is not on calc stream.
    if isinstance(out_tensor_or_tensor_list, list):
        if not sync_op:
            dist.wait(out_tensor, use_calc_stream=False)
118
        # 0-D use stack/unstack while others use concat/split
119 120 121 122 123 124
        if len(in_tensor_or_tensor_list[0].shape) == 0:
            out_tensor_or_tensor_list.extend(paddle.unstack(out_tensor, 0))
        else:
            out_tensor_or_tensor_list.extend(
                paddle.split(out_tensor, nranks, 0)
            )
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

    return None


def alltoall(
    out_tensor_or_tensor_list,
    in_tensor_or_tensor_list,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
    """

    Scatter a tensor (or a tensor list) across devices and gather outputs to another tensor (or a tensor list, respectively).

    Args:
        out_tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The output. If it is a tensor, it should be correctly-sized.
        If it is a list, it should be empty or contain correctly-sized tensors. Its data type should be the same as the input.
        in_tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The input to scatter (must be specified on the source rank).
            If it is a tensor, it should be correctly-sized. If it is a list, it should contain correctly-sized tensors. Support
            float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            out_tensor_list = []
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
                data2 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]])
            else:
                data1 = paddle.to_tensor([[13, 14, 15], [16, 17, 18]])
                data2 = paddle.to_tensor([[19, 20, 21], [22, 23, 24]])
            task = dist.stream.alltoall(out_tensor_list, [data1, data2], sync_op=False)
            task.wait()
            print(out_tensor_list)
            # [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]    (2 GPUs, out for rank 0)
            # [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]] (2 GPUs, out for rank 1)
    """
    if _warn_cur_rank_not_in_group(group):
        return

    if not sync_op and use_calc_stream:
        raise RuntimeError(
            "use_calc_stream can only be true in sync op behavior."
        )

    if out_tensor_or_tensor_list is None:
        raise RuntimeError("The output should be specified.")
    if in_tensor_or_tensor_list is None:
        raise RuntimeError("The input should be specified.")

188
    if framework.in_dynamic_mode():
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        group = _get_global_group() if group is None else group
        out_is_tensor = paddle.is_tensor(out_tensor_or_tensor_list)
        in_is_tensor = paddle.is_tensor(in_tensor_or_tensor_list)
        if out_is_tensor and in_is_tensor:
            return _all_to_all_tensor_in_dygraph(
                out_tensor_or_tensor_list,
                in_tensor_or_tensor_list,
                group,
                sync_op,
                use_calc_stream,
            )
        elif not out_is_tensor and not in_is_tensor:
            return _all_to_all_in_dygraph(
                out_tensor_or_tensor_list,
                in_tensor_or_tensor_list,
                group,
                sync_op,
                use_calc_stream,
            )
        else:
            raise RuntimeError(
                "The output and input should be both tensor or tensor list."
            )
    else:
213 214 215
        assert (
            group is None
        ), "Group can not be used in static graph mode for now."
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        return _all_to_all_in_static_mode(
            out_tensor_or_tensor_list,
            in_tensor_or_tensor_list,
            group,
            sync_op,
            use_calc_stream,
        )


def _alltoall_single_in_dygraph(
    out_tensor,
    in_tensor,
    out_split_sizes,
    in_split_sizes,
    group,
    sync_op,
    use_calc_stream,
):
T
Tian 已提交
234
    world_size = dist.get_world_size(group)
235
    if out_split_sizes is None:
236 237 238
        out_split_sizes = [
            out_tensor.shape[0] // world_size for _ in range(world_size)
        ]
239
    if in_split_sizes is None:
240 241 242
        in_split_sizes = [
            in_tensor.shape[0] // world_size for _ in range(world_size)
        ]
243 244

    if use_calc_stream:
L
LiYuRio 已提交
245
        return group.process_group.all_to_all_single_on_calc_stream(
246
            out_tensor, in_tensor, out_split_sizes, in_split_sizes
247 248
        )

L
LiYuRio 已提交
249
    task = group.process_group.all_to_all_single(
250
        out_tensor, in_tensor, out_split_sizes, in_split_sizes, sync_op
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    )
    if sync_op:
        task.wait()

    return task


def alltoall_single(
    out_tensor,
    in_tensor,
    out_split_sizes=None,
    in_split_sizes=None,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
    """

    Split and Scatter the splitted input tensor to the out tensor across devices.

    Args:
        out_tensor(Tensor): The output tensor. Its data type should be the same as the input.
        in_tensor (Tensor): The input tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool.
        out_split_sizes (List[int], optional): Split sizes of out_tensor for dim[0]. If not given, dim[0] of out_tensor must be divisible
            by group size and out_tensor will be gathered averagely from all participators. If none is given, use a empty list as default.
        in_split_sizes (List[int], optional): Split sizes of in_tensor for dim[0]. If not given, dim[0] of in_tensor must be divisible
        by group size and in_tensor will be scattered averagely to all participators. If none is given, use a empty list as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode now.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            local_rank = dist.get_rank()

            # case 1
            output = paddle.empty([2], dtype="int64")
            if local_rank == 0:
                data = paddle.to_tensor([0, 1])
            else:
                data = paddle.to_tensor([2, 3])
            task = dist.stream.alltoall_single(output, data, sync_op=False)
            task.wait()
            out = output.numpy()
            # [0, 2] (2 GPUs, out for rank 0)
            # [1, 3] (2 GPUs, out for rank 1)

            # case 2
            size = dist.get_world_size()
            output = paddle.empty([(local_rank + 1) * size, size], dtype='float32')
            if local_rank == 0:
                data = paddle.to_tensor([[0., 0.], [0., 0.], [0., 0.]])
            else:
                data = paddle.to_tensor([[1., 1.], [1., 1.], [1., 1.]])
            out_split_sizes = [local_rank + 1 for i in range(size)]
            in_split_sizes = [i + 1 for i in range(size)]
            task = dist.stream.alltoall_single(output,
                                            data,
                                            out_split_sizes,
                                            in_split_sizes,
                                            sync_op=False)
            task.wait()
            out = output.numpy()
            # [[0., 0.], [1., 1.]]                     (2 GPUs, out for rank 0)
            # [[0., 0.], [0., 0.], [1., 1.], [1., 1.]] (2 GPUs, out for rank 1)
    """
    if _warn_cur_rank_not_in_group(group):
        return

    if not sync_op and use_calc_stream:
        raise RuntimeError(
            "use_calc_stream can only be true in sync op behavior."
        )

338
    if framework.in_dynamic_mode():
339 340 341 342 343 344 345 346 347 348 349 350 351 352
        group = _get_global_group() if group is None else group
        return _alltoall_single_in_dygraph(
            out_tensor,
            in_tensor,
            out_split_sizes,
            in_split_sizes,
            group,
            sync_op,
            use_calc_stream,
        )

    raise RuntimeError(
        "paddle.distributed.stream.alltoall_single is only supported in dygraph mode now."
    )