test_imperative_ptq.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

from __future__ import print_function

import os
import numpy as np
import random
import shutil
import time
import unittest
23
import copy
24 25
import logging

X
XGZhang 已提交
26
import paddle.nn as nn
27 28 29 30 31
import paddle
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization import *
from paddle.fluid.log_helper import get_logger
from paddle.dataset.common import download
J
Jiabin Yang 已提交
32
from paddle.fluid.framework import _test_eager_guard
33

X
XGZhang 已提交
34 35
from imperative_test_utils import fix_model_dict, ImperativeLenet, ImperativeLinearBn
from imperative_test_utils import ImperativeLinearBn_hook
36 37 38 39 40

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


X
XGZhang 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class TestFuseLinearBn(unittest.TestCase):
    """
    Fuse the linear and bn layers, and then quantize the model.
    """

    def test_fuse(self):
        model = ImperativeLinearBn()
        model_h = ImperativeLinearBn_hook()
        inputs = paddle.randn((3, 10), dtype="float32")
        config = PTQConfig(AbsmaxQuantizer(), AbsmaxQuantizer())
        ptq = ImperativePTQ(config)
        f_l = [['linear', 'bn']]
        quant_model = ptq.quantize(model, fuse=True, fuse_list=f_l)
        quant_h = ptq.quantize(model_h, fuse=True, fuse_list=f_l)
        for name, layer in quant_model.named_sublayers():
            if name in f_l:
                assert not (isinstance(layer, nn.BatchNorm1D) or
                            isinstance(layer, nn.BatchNorm2D))
        out = model(inputs)
        out_h = model_h(inputs)
        out_quant = quant_model(inputs)
        out_quant_h = quant_h(inputs)
        cos_sim_func = nn.CosineSimilarity(axis=0)
        print('fuse linear+bn',
              cos_sim_func(out.flatten(), out_quant.flatten()))
        print(cos_sim_func(out_h.flatten(), out_quant_h.flatten()))


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TestImperativePTQ(unittest.TestCase):
    """
    """

    @classmethod
    def setUpClass(cls):
        timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
        cls.root_path = os.path.join(os.getcwd(), "imperative_ptq_" + timestamp)
        cls.save_path = os.path.join(cls.root_path, "model")

        cls.download_path = 'dygraph_int8/download'
        cls.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                              cls.download_path)

        cls.lenet_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz"
        cls.lenet_md5 = "953b802fb73b52fae42896e3c24f0afb"

        seed = 1
        np.random.seed(seed)
        paddle.static.default_main_program().random_seed = seed
        paddle.static.default_startup_program().random_seed = seed

    @classmethod
    def tearDownClass(cls):
        try:
94 95
            pass
            # shutil.rmtree(cls.root_path)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        except Exception as e:
            print("Failed to delete {} due to {}".format(cls.root_path, str(e)))

    def cache_unzipping(self, target_folder, zip_path):
        if not os.path.exists(target_folder):
            cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
                                                          zip_path)
            os.system(cmd)

    def download_model(self, data_url, data_md5, folder_name):
        download(data_url, self.download_path, data_md5)
        file_name = data_url.split('/')[-1]
        zip_path = os.path.join(self.cache_folder, file_name)
        print('Data is downloaded at {0}'.format(zip_path))

        data_cache_folder = os.path.join(self.cache_folder, folder_name)
        self.cache_unzipping(data_cache_folder, zip_path)
        return data_cache_folder

    def set_vars(self):
116 117
        config = PTQConfig(AbsmaxQuantizer(), AbsmaxQuantizer())
        self.ptq = ImperativePTQ(config)
118 119 120

        self.batch_num = 10
        self.batch_size = 10
121
        self.eval_acc_top1 = 0.95
122

123
        # the input, output and weight thresholds of quantized op
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.gt_thresholds = {
            'conv2d_0': [[1.0], [0.37673383951187134], [0.10933732241392136]],
            'batch_norm2d_0': [[0.37673383951187134], [0.44249194860458374]],
            're_lu_0': [[0.44249194860458374], [0.25804123282432556]],
            'max_pool2d_0': [[0.25804123282432556], [0.25804123282432556]],
            'linear_0':
            [[1.7058950662612915], [14.405526161193848], [0.4373355209827423]],
            'add_0': [[1.7058950662612915, 0.0], [1.7058950662612915]],
        }

    def model_test(self, model, batch_num=-1, batch_size=8):
        model.eval()

        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)

        eval_acc_top1_list = []
        for batch_id, data in enumerate(test_reader()):
            x_data = np.array([x[0].reshape(1, 28, 28)
                               for x in data]).astype('float32')
            y_data = np.array(
                [x[1] for x in data]).astype('int64').reshape(-1, 1)

            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)

            out = model(img)
            acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
153
            eval_acc_top1_list.append(float(acc_top1.numpy()))
154

155
            if batch_id % 50 == 0:
156 157 158 159 160 161 162 163 164 165
                _logger.info("Test | At step {}: acc1 = {:}, acc5 = {:}".format(
                    batch_id, acc_top1.numpy(), acc_top5.numpy()))

            if batch_num > 0 and batch_id + 1 >= batch_num:
                break

        eval_acc_top1 = sum(eval_acc_top1_list) / len(eval_acc_top1_list)

        return eval_acc_top1

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    def program_test(self, program_path, batch_num=-1, batch_size=8):
        exe = paddle.static.Executor(paddle.CPUPlace())
        [inference_program, feed_target_names, fetch_targets] = (
            paddle.static.load_inference_model(program_path, exe))

        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)

        top1_correct_num = 0.
        total_num = 0.
        for batch_id, data in enumerate(test_reader()):
            img = np.array([x[0].reshape(1, 28, 28)
                            for x in data]).astype('float32')
            label = np.array([x[1] for x in data]).astype('int64')

            feed = {feed_target_names[0]: img}
            results = exe.run(inference_program,
                              feed=feed,
                              fetch_list=fetch_targets)

            pred = np.argmax(results[0], axis=1)
            top1_correct_num += np.sum(np.equal(pred, label))
            total_num += len(img)

            if total_num % 50 == 49:
                _logger.info("Test | Test num {}: acc1 = {:}".format(
                    total_num, top1_correct_num / total_num))

            if batch_num > 0 and batch_id + 1 >= batch_num:
                break
        return top1_correct_num / total_num
197

J
Jiabin Yang 已提交
198
    def func_ptq(self):
199 200 201 202
        start_time = time.time()

        self.set_vars()

203
        # Load model
204 205 206 207
        params_path = self.download_model(self.lenet_url, self.lenet_md5,
                                          "lenet")
        params_path += "/lenet_pretrained/lenet.pdparams"

208 209 210 211 212 213 214
        model = ImperativeLenet()
        model_state_dict = paddle.load(params_path)
        model.set_state_dict(model_state_dict)
        # Quantize, calibrate and save
        quant_model = self.ptq.quantize(model)
        before_acc_top1 = self.model_test(quant_model, self.batch_num,
                                          self.batch_size)
215 216 217 218 219

        input_spec = [
            paddle.static.InputSpec(
                shape=[None, 1, 28, 28], dtype='float32')
        ]
220 221
        self.ptq.save_quantized_model(
            model=quant_model, path=self.save_path, input_spec=input_spec)
222 223
        print('Quantized model saved in {%s}' % self.save_path)

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        after_acc_top1 = self.model_test(quant_model, self.batch_num,
                                         self.batch_size)

        paddle.enable_static()
        infer_acc_top1 = self.program_test(self.save_path, self.batch_num,
                                           self.batch_size)
        paddle.disable_static()

        # Check
        print('Before converted acc_top1: %s' % before_acc_top1)
        print('After converted acc_top1: %s' % after_acc_top1)
        print('Infer acc_top1: %s' % infer_acc_top1)

        self.assertTrue(
            after_acc_top1 >= self.eval_acc_top1,
            msg="The test acc {%f} is less than {%f}." %
            (after_acc_top1, self.eval_acc_top1))
        self.assertTrue(
            infer_acc_top1 >= after_acc_top1,
            msg='The acc is lower after converting model.')
X
XGZhang 已提交
244 245 246 247

        end_time = time.time()
        print("total time: %ss \n" % (end_time - start_time))

J
Jiabin Yang 已提交
248 249 250 251 252
    def test_ptq(self):
        with _test_eager_guard():
            self.func_ptq()
        self.func_ptq()

X
XGZhang 已提交
253 254

class TestImperativePTQfuse(TestImperativePTQ):
J
Jiabin Yang 已提交
255
    def func_ptq(self):
X
XGZhang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        start_time = time.time()

        self.set_vars()

        # Load model
        params_path = self.download_model(self.lenet_url, self.lenet_md5,
                                          "lenet")
        params_path += "/lenet_pretrained/lenet.pdparams"

        model = ImperativeLenet()
        model_state_dict = paddle.load(params_path)
        model.set_state_dict(model_state_dict)
        # Quantize, calibrate and save
        f_l = [['features.0', 'features.1'], ['features.4', 'features.5']]
        quant_model = self.ptq.quantize(model, fuse=True, fuse_list=f_l)
        for name, layer in quant_model.named_sublayers():
            if name in f_l:
                assert not (isinstance(layer, nn.BatchNorm1D) or
                            isinstance(layer, nn.BatchNorm2D))
        before_acc_top1 = self.model_test(quant_model, self.batch_num,
                                          self.batch_size)

        input_spec = [
            paddle.static.InputSpec(
                shape=[None, 1, 28, 28], dtype='float32')
        ]
        self.ptq.save_quantized_model(
            model=quant_model, path=self.save_path, input_spec=input_spec)
        print('Quantized model saved in {%s}' % self.save_path)

        after_acc_top1 = self.model_test(quant_model, self.batch_num,
                                         self.batch_size)

        paddle.enable_static()
        infer_acc_top1 = self.program_test(self.save_path, self.batch_num,
                                           self.batch_size)
        paddle.disable_static()

        # Check
        print('Before converted acc_top1: %s' % before_acc_top1)
        print('After converted acc_top1: %s' % after_acc_top1)
        print('Infer acc_top1: %s' % infer_acc_top1)

        #Check whether the quant_model is correct after converting.
        #The acc of quantized model should be higher than 0.95.
        self.assertTrue(
            after_acc_top1 >= self.eval_acc_top1,
            msg="The test acc {%f} is less than {%f}." %
            (after_acc_top1, self.eval_acc_top1))
        #Check the saved infer_model.The acc of infer model 
        #should not be lower than the one of dygraph model.
        self.assertTrue(
            infer_acc_top1 >= after_acc_top1,
            msg='The acc is lower after converting model.')
310

311
        end_time = time.time()
312
        print("total time: %ss \n" % (end_time - start_time))
313

J
Jiabin Yang 已提交
314 315 316 317 318
    def test_ptq(self):
        with _test_eager_guard():
            self.func_ptq()
        self.func_ptq()

319 320 321 322 323 324 325 326

class TestImperativePTQHist(TestImperativePTQ):
    def set_vars(self):
        config = PTQConfig(HistQuantizer(), AbsmaxQuantizer())
        self.ptq = ImperativePTQ(config)

        self.batch_num = 10
        self.batch_size = 10
327
        self.eval_acc_top1 = 0.98
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

        self.gt_thresholds = {
            'conv2d_0':
            [[0.99853515625], [0.35732391771364225], [0.10933732241392136]],
            'batch_norm2d_0': [[0.35732391771364225], [0.4291427868761275]],
            're_lu_0': [[0.4291427868761275], [0.2359918110742001]],
            'max_pool2d_0': [[0.2359918110742001], [0.25665526917146053]],
            'linear_0':
            [[1.7037603475152991], [14.395224522473026], [0.4373355209827423]],
            'add_0': [[1.7037603475152991, 0.0], [1.7037603475152991]],
        }


class TestImperativePTQKL(TestImperativePTQ):
    def set_vars(self):
        config = PTQConfig(KLQuantizer(), PerChannelAbsmaxQuantizer())
        self.ptq = ImperativePTQ(config)

        self.batch_num = 10
        self.batch_size = 10
348
        self.eval_acc_top1 = 1.0
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

        conv2d_1_wt_thresholds = [
            0.18116560578346252, 0.17079241573810577, 0.1702047884464264,
            0.179476797580719, 0.1454375684261322, 0.22981858253479004
        ]
        self.gt_thresholds = {
            'conv2d_0': [[0.99267578125], [0.37695913558696836]],
            'conv2d_1': [[0.19189296757394914], [0.24514256547263358],
                         [conv2d_1_wt_thresholds]],
            'batch_norm2d_0': [[0.37695913558696836], [0.27462541429440535]],
            're_lu_0': [[0.27462541429440535], [0.19189296757394914]],
            'max_pool2d_0': [[0.19189296757394914], [0.19189296757394914]],
            'linear_0': [[1.2839322163611087], [8.957185942414352]],
            'add_0': [[1.2839322163611087, 0.0], [1.2839322163611087]],
        }


if __name__ == '__main__':
    unittest.main()