test_imperative_ptq.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

from __future__ import print_function

import os
import numpy as np
import random
import shutil
import time
import unittest
import logging

import paddle
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization import *
from paddle.fluid.log_helper import get_logger
from paddle.dataset.common import download

from imperative_test_utils import fix_model_dict, ImperativeLenet

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class TestImperativePTQ(unittest.TestCase):
    """
    """

    @classmethod
    def setUpClass(cls):
        timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
        cls.root_path = os.path.join(os.getcwd(), "imperative_ptq_" + timestamp)
        cls.save_path = os.path.join(cls.root_path, "model")

        cls.download_path = 'dygraph_int8/download'
        cls.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                              cls.download_path)

        cls.lenet_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz"
        cls.lenet_md5 = "953b802fb73b52fae42896e3c24f0afb"

        seed = 1
        np.random.seed(seed)
        paddle.static.default_main_program().random_seed = seed
        paddle.static.default_startup_program().random_seed = seed

    @classmethod
    def tearDownClass(cls):
        try:
            shutil.rmtree(cls.root_path)
        except Exception as e:
            print("Failed to delete {} due to {}".format(cls.root_path, str(e)))

    def cache_unzipping(self, target_folder, zip_path):
        if not os.path.exists(target_folder):
            cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
                                                          zip_path)
            os.system(cmd)

    def download_model(self, data_url, data_md5, folder_name):
        download(data_url, self.download_path, data_md5)
        file_name = data_url.split('/')[-1]
        zip_path = os.path.join(self.cache_folder, file_name)
        print('Data is downloaded at {0}'.format(zip_path))

        data_cache_folder = os.path.join(self.cache_folder, folder_name)
        self.cache_unzipping(data_cache_folder, zip_path)
        return data_cache_folder

    def set_vars(self):
        self.ptq = ImperativePTQ(default_ptq_config)

        self.batch_num = 10
        self.batch_size = 10
        self.eval_acc_top1 = 0.99

        self.gt_thresholds = {
            'conv2d_0': [[1.0], [0.37673383951187134], [0.10933732241392136]],
            'batch_norm2d_0': [[0.37673383951187134], [0.44249194860458374]],
            're_lu_0': [[0.44249194860458374], [0.25804123282432556]],
            'max_pool2d_0': [[0.25804123282432556], [0.25804123282432556]],
            'linear_0':
            [[1.7058950662612915], [14.405526161193848], [0.4373355209827423]],
            'add_0': [[1.7058950662612915, 0.0], [1.7058950662612915]],
        }

    def model_train(self, model, train_reader, max_step=-1):
        model.train()
        adam = paddle.optimizer.Adam(
            learning_rate=0.001, parameters=model.parameters())

        for batch_id, data in enumerate(train_reader()):
            x_data = np.array([x[0].reshape(1, 28, 28)
                               for x in data]).astype('float32')
            y_data = np.array(
                [x[1] for x in data]).astype('int64').reshape(-1, 1)

            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)

            out = model(img)
            acc = fluid.layers.accuracy(out, label)
            loss = fluid.layers.cross_entropy(out, label)
            avg_loss = fluid.layers.mean(loss)
            avg_loss.backward()

            adam.minimize(avg_loss)
            model.clear_gradients()

            if batch_id % 100 == 0:
                _logger.info("Train | step {}: loss = {:}, acc= {:}".format(
                    batch_id, avg_loss.numpy(), acc.numpy()))

            if max_step > 0 and batch_id > max_step:  # For shortening CI time
                break

    def model_test(self, model, batch_num=-1, batch_size=8):
        model.eval()

        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)

        eval_acc_top1_list = []
        for batch_id, data in enumerate(test_reader()):
            x_data = np.array([x[0].reshape(1, 28, 28)
                               for x in data]).astype('float32')
            y_data = np.array(
                [x[1] for x in data]).astype('int64').reshape(-1, 1)

            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)

            out = model(img)
            acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

            if batch_id % 100 == 0:
                eval_acc_top1_list.append(float(acc_top1.numpy()))
                _logger.info("Test | At step {}: acc1 = {:}, acc5 = {:}".format(
                    batch_id, acc_top1.numpy(), acc_top5.numpy()))

            if batch_num > 0 and batch_id + 1 >= batch_num:
                break

        eval_acc_top1 = sum(eval_acc_top1_list) / len(eval_acc_top1_list)

        return eval_acc_top1

    def check_thresholds(self, model):
        check_num = 0
        for name, layer in model.named_sublayers():
            layer_name = layer.full_name()
            if layer_name in self.gt_thresholds:
                ref_val = self.gt_thresholds[layer_name]
                assert hasattr(layer, '_quant_config')

                quant_config = layer._quant_config
                in_val = quant_config.in_act_quantizer.thresholds
                out_val = quant_config.out_act_quantizer.thresholds
                wt_val = quant_config.wt_quantizer.thresholds
                check_num += 1

                self.assertTrue(
                    np.allclose(
                        ref_val[0], in_val, atol=1e-3),
                    "%s | The thresholds(%s) is different "
                    "from the ground truth(%s)." %
                    (layer_name, str(in_val), str(ref_val[0])))
                self.assertTrue(
                    np.allclose(
                        ref_val[1], out_val, atol=1e-3),
                    "%s | The thresholds(%s) is different "
                    "from the ground truth(%s)." %
                    (layer_name, str(out_val), str(ref_val[1])))
                if len(ref_val) > 2 and ref_val[2] != []:
                    self.assertTrue(
                        np.allclose(
                            ref_val[2], wt_val, atol=1e-3),
                        "%s | The thresholds(%s) is different "
                        "from the ground truth(%s)." %
                        (layer_name, str(wt_val), str(ref_val[2])))

        self.assertTrue(check_num == len(self.gt_thresholds))

    def test_ptq(self):
        start_time = time.time()

        self.set_vars()

        params_path = self.download_model(self.lenet_url, self.lenet_md5,
                                          "lenet")
        params_path += "/lenet_pretrained/lenet.pdparams"

        with fluid.dygraph.guard():
            model = ImperativeLenet()
            model_state_dict = paddle.load(params_path)
            model.set_state_dict(model_state_dict)

211
            quant_model = self.ptq.quantize(model)
212

213 214
            acc_top1 = self.model_test(quant_model, self.batch_num,
                                       self.batch_size)
215 216 217 218 219 220
            print('acc_top1: %s' % acc_top1)
            self.assertTrue(
                acc_top1 > self.eval_acc_top1,
                msg="The test acc {%f} is less than {%f}." %
                (acc_top1, self.eval_acc_top1))

221
            final_model = self.ptq.convert(quant_model)
222

223
        self.check_thresholds(final_model)
224 225 226 227 228

        input_spec = [
            paddle.static.InputSpec(
                shape=[None, 1, 28, 28], dtype='float32')
        ]
229 230
        paddle.jit.save(
            layer=final_model, path=self.save_path, input_spec=input_spec)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        print('Quantized model saved in {%s}' % self.save_path)

        end_time = time.time()
        print("total time: %ss" % (end_time - start_time))


class TestImperativePTQHist(TestImperativePTQ):
    def set_vars(self):
        config = PTQConfig(HistQuantizer(), AbsmaxQuantizer())
        self.ptq = ImperativePTQ(config)

        self.batch_num = 10
        self.batch_size = 10
        self.eval_acc_top1 = 0.99

        self.gt_thresholds = {
            'conv2d_0':
            [[0.99853515625], [0.35732391771364225], [0.10933732241392136]],
            'batch_norm2d_0': [[0.35732391771364225], [0.4291427868761275]],
            're_lu_0': [[0.4291427868761275], [0.2359918110742001]],
            'max_pool2d_0': [[0.2359918110742001], [0.25665526917146053]],
            'linear_0':
            [[1.7037603475152991], [14.395224522473026], [0.4373355209827423]],
            'add_0': [[1.7037603475152991, 0.0], [1.7037603475152991]],
        }


class TestImperativePTQKL(TestImperativePTQ):
    def set_vars(self):
        config = PTQConfig(KLQuantizer(), PerChannelAbsmaxQuantizer())
        self.ptq = ImperativePTQ(config)

        self.batch_num = 10
        self.batch_size = 10
        self.eval_acc_top1 = 0.99

        conv2d_1_wt_thresholds = [
            0.18116560578346252, 0.17079241573810577, 0.1702047884464264,
            0.179476797580719, 0.1454375684261322, 0.22981858253479004
        ]
        self.gt_thresholds = {
            'conv2d_0': [[0.99267578125], [0.37695913558696836]],
            'conv2d_1': [[0.19189296757394914], [0.24514256547263358],
                         [conv2d_1_wt_thresholds]],
            'batch_norm2d_0': [[0.37695913558696836], [0.27462541429440535]],
            're_lu_0': [[0.27462541429440535], [0.19189296757394914]],
            'max_pool2d_0': [[0.19189296757394914], [0.19189296757394914]],
            'linear_0': [[1.2839322163611087], [8.957185942414352]],
            'add_0': [[1.2839322163611087, 0.0], [1.2839322163611087]],
        }


if __name__ == '__main__':
    unittest.main()