nan_inf_utils.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/nan_inf_utils.h"

#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
L
Leo Chen 已提交
18 19
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
20
#include "paddle/phi/core/compat/convert_utils.h"
21
#include "paddle/phi/core/dense_tensor.h"
22
#include "paddle/phi/core/flags.h"
23 24
#include "paddle/phi/core/selected_rows.h"

25
PHI_DECLARE_int32(check_nan_inf_level);
26 27
namespace egr {

28 29 30 31 32 33 34 35 36 37
static std::unordered_set<std::string>& nan_inf_check_op_list() {
  static std::unordered_set<std::string> _check_op_list = {};
  return _check_op_list;
}

static std::unordered_set<std::string>& nan_inf_skip_op_list() {
  static std::unordered_set<std::string> _skip_op_list = {};
  return _skip_op_list;
}

38
void SetCheckOpList(const std::string& check_op_list = "") {
39
  nan_inf_check_op_list();
40
  if (check_op_list.size() != 0) {
41 42 43 44 45 46
    std::stringstream ss(check_op_list);
    std::string op_type;
    LOG(INFO) << "Please set op's name according to the "
                 "paddle.amp.low_precision_op_list()";
    while (std::getline(ss, op_type, ',')) {
      nan_inf_check_op_list().emplace(op_type);
47
      VLOG(4) << "Check nan inf op list: " << op_type;
48 49
    }
  }
50
}
51

52 53 54
void SetSkipOpList(const std::string& skip_op_list = "") {
  nan_inf_skip_op_list();
  if (skip_op_list.size() != 0) {
55 56 57 58 59 60
    std::stringstream ss(skip_op_list);
    std::string op_type;
    LOG(INFO) << "Please set op's name according to the "
                 "paddle.amp.low_precision_op_list()";
    while (std::getline(ss, op_type, ',')) {
      nan_inf_skip_op_list().emplace(op_type);
61
      VLOG(4) << "Skip nan inf op list: " << op_type;
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    }
  }
}

bool CheckOp(const std::string& api_name) {
  if (nan_inf_skip_op_list().count("all") ||
      nan_inf_skip_op_list().count(api_name)) {
    VLOG(4) << "Current op is in skipped_op_list : " << api_name;
    return false;
  }

  if (nan_inf_check_op_list().size() != 0 &&
      (!nan_inf_check_op_list().count(api_name))) {
    VLOG(4) << "Current op isn't in checked_op_list : " << api_name;
    return false;
  }

  VLOG(6) << "Current check nan inf Op is : " << api_name;
  return true;
}

83
void CheckTensorHasNanOrInf(const std::string& api_name, const Tensor& tensor) {
84 85
  auto op_name = phi::TransToFluidOpName(api_name);
  if (tensor.initialized() && CheckOp(op_name)) {
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    auto& tensor_name = tensor.name();
    const phi::DenseTensor* dense_tensor{nullptr};
    if (tensor.is_dense_tensor()) {
      dense_tensor = static_cast<const phi::DenseTensor*>(tensor.impl().get());
    } else if (tensor.is_selected_rows()) {
      dense_tensor = &(
          static_cast<const phi::SelectedRows*>(tensor.impl().get())->value());
    } else {
      VLOG(10) << "Only DenseTensor or SelectedRows need to check, "
               << tensor_name << " is no need.";
      return;
    }

    auto& place = dense_tensor->place();
    if (paddle::platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
102
      paddle::framework::details::tensor_check<phi::GPUContext>(
103
          api_name, tensor_name, *dense_tensor, place);
104 105 106 107 108 109 110
#else
      PADDLE_THROW(paddle::platform::errors::PreconditionNotMet(
          "Tensor[%s] use gpu place. PaddlePaddle must compile with GPU.",
          tensor_name));
#endif
      return;
    }
L
Leo Chen 已提交
111
    paddle::framework::details::tensor_check<phi::CPUContext>(
112
        api_name, tensor_name, *dense_tensor, place);
113 114 115
  }
}

W
wanghuancoder 已提交
116 117 118 119 120
void CheckTensorHasNanOrInf(const std::string& api_name,
                            const paddle::optional<Tensor>& tensor) {
  CheckTensorHasNanOrInf(api_name, tensor.get());
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfTwoTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfThreeTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfFourTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<3>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfFiveTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<3>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<4>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfSixTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<3>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<4>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<5>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const std::vector<Tensor>& tensors) {
  for (auto& tensor : tensors) {
    CheckTensorHasNanOrInf(api_name, tensor);
  }
}

W
wanghuancoder 已提交
168 169 170 171 172 173 174 175
void CheckTensorHasNanOrInf(
    const std::string& api_name,
    const paddle::optional<std::vector<Tensor>>& tensors) {
  if (tensors) {
    CheckTensorHasNanOrInf(api_name, tensors.get());
  }
}

176 177
void CheckTensorHasNanOrInf(
    const std::string& api_name,
178
    const paddle::small_vector<std::vector<paddle::Tensor>,
179 180 181 182 183 184
                               egr::kSlotSmallVectorSize>& tensors) {
  for (auto& tensor_vector : tensors) {
    CheckTensorHasNanOrInf(api_name, tensor_vector);
  }
}

185 186 187 188
void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfTensorAndVector& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
189
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
190 191
}

192
}  // namespace egr