nan_inf_utils.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/nan_inf_utils.h"

#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
L
Leo Chen 已提交
18 19
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
20 21 22
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"

23 24
#include "paddle/phi/core/compat/convert_utils.h"
DECLARE_int32(check_nan_inf_level);
25 26
namespace egr {

27 28 29 30 31 32 33 34 35 36
static std::unordered_set<std::string>& nan_inf_check_op_list() {
  static std::unordered_set<std::string> _check_op_list = {};
  return _check_op_list;
}

static std::unordered_set<std::string>& nan_inf_skip_op_list() {
  static std::unordered_set<std::string> _skip_op_list = {};
  return _skip_op_list;
}

37
void SetCheckOpList(const std::string& check_op_list = "") {
38
  nan_inf_check_op_list();
39
  if (check_op_list.size() != 0) {
40 41 42 43 44 45
    std::stringstream ss(check_op_list);
    std::string op_type;
    LOG(INFO) << "Please set op's name according to the "
                 "paddle.amp.low_precision_op_list()";
    while (std::getline(ss, op_type, ',')) {
      nan_inf_check_op_list().emplace(op_type);
46
      VLOG(4) << "Check nan inf op list: " << op_type;
47 48
    }
  }
49
}
50

51 52 53
void SetSkipOpList(const std::string& skip_op_list = "") {
  nan_inf_skip_op_list();
  if (skip_op_list.size() != 0) {
54 55 56 57 58 59
    std::stringstream ss(skip_op_list);
    std::string op_type;
    LOG(INFO) << "Please set op's name according to the "
                 "paddle.amp.low_precision_op_list()";
    while (std::getline(ss, op_type, ',')) {
      nan_inf_skip_op_list().emplace(op_type);
60
      VLOG(4) << "Skip nan inf op list: " << op_type;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    }
  }
}

bool CheckOp(const std::string& api_name) {
  if (nan_inf_skip_op_list().count("all") ||
      nan_inf_skip_op_list().count(api_name)) {
    VLOG(4) << "Current op is in skipped_op_list : " << api_name;
    return false;
  }

  if (nan_inf_check_op_list().size() != 0 &&
      (!nan_inf_check_op_list().count(api_name))) {
    VLOG(4) << "Current op isn't in checked_op_list : " << api_name;
    return false;
  }

  VLOG(6) << "Current check nan inf Op is : " << api_name;
  return true;
}

82
void CheckTensorHasNanOrInf(const std::string& api_name, const Tensor& tensor) {
83 84
  auto op_name = phi::TransToFluidOpName(api_name);
  if (tensor.initialized() && CheckOp(op_name)) {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    auto& tensor_name = tensor.name();
    const phi::DenseTensor* dense_tensor{nullptr};
    if (tensor.is_dense_tensor()) {
      dense_tensor = static_cast<const phi::DenseTensor*>(tensor.impl().get());
    } else if (tensor.is_selected_rows()) {
      dense_tensor = &(
          static_cast<const phi::SelectedRows*>(tensor.impl().get())->value());
    } else {
      VLOG(10) << "Only DenseTensor or SelectedRows need to check, "
               << tensor_name << " is no need.";
      return;
    }

    auto& place = dense_tensor->place();
    if (paddle::platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
101
      paddle::framework::details::tensor_check<phi::GPUContext>(
102
          api_name, tensor_name, *dense_tensor, place);
103 104 105 106 107 108 109
#else
      PADDLE_THROW(paddle::platform::errors::PreconditionNotMet(
          "Tensor[%s] use gpu place. PaddlePaddle must compile with GPU.",
          tensor_name));
#endif
      return;
    }
L
Leo Chen 已提交
110
    paddle::framework::details::tensor_check<phi::CPUContext>(
111
        api_name, tensor_name, *dense_tensor, place);
112 113 114
  }
}

W
wanghuancoder 已提交
115 116 117 118 119
void CheckTensorHasNanOrInf(const std::string& api_name,
                            const paddle::optional<Tensor>& tensor) {
  CheckTensorHasNanOrInf(api_name, tensor.get());
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfTwoTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfThreeTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfFourTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<3>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfFiveTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<3>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<4>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfSixTensors& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<3>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<4>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<5>(tensors));
}

void CheckTensorHasNanOrInf(const std::string& api_name,
                            const std::vector<Tensor>& tensors) {
  for (auto& tensor : tensors) {
    CheckTensorHasNanOrInf(api_name, tensor);
  }
}

W
wanghuancoder 已提交
167 168 169 170 171 172 173 174
void CheckTensorHasNanOrInf(
    const std::string& api_name,
    const paddle::optional<std::vector<Tensor>>& tensors) {
  if (tensors) {
    CheckTensorHasNanOrInf(api_name, tensors.get());
  }
}

175 176
void CheckTensorHasNanOrInf(
    const std::string& api_name,
177
    const paddle::small_vector<std::vector<paddle::Tensor>,
178 179 180 181 182 183
                               egr::kSlotSmallVectorSize>& tensors) {
  for (auto& tensor_vector : tensors) {
    CheckTensorHasNanOrInf(api_name, tensor_vector);
  }
}

184 185 186 187
void CheckTensorHasNanOrInf(const std::string& api_name,
                            const TupleOfTensorAndVector& tensors) {
  CheckTensorHasNanOrInf(api_name, std::get<0>(tensors));
  CheckTensorHasNanOrInf(api_name, std::get<1>(tensors));
188
  CheckTensorHasNanOrInf(api_name, std::get<2>(tensors));
189 190
}

191
}  // namespace egr