test_recommender_system.py 12.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math
import sys
武毅 已提交
17
import os
Q
Qiao Longfei 已提交
18
import numpy as np
19
import paddle
20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
24
import tempfile
25 26
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import SGDOptimizer
27

P
pangyoki 已提交
28 29
paddle.enable_static()

30 31
IS_SPARSE = True
USE_GPU = False
32 33 34 35 36 37 38 39 40
BATCH_SIZE = 256


def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

F
fengjiayi 已提交
41
    uid = layers.data(name='user_id', shape=[1], dtype='int64')
42

43 44 45 46 47 48 49
    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE,
    )
50

Q
Qiao Longfei 已提交
51
    usr_fc = layers.fc(input=usr_emb, size=32)
52 53 54

    USR_GENDER_DICT_SIZE = 2

F
fengjiayi 已提交
55
    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
56

57 58 59 60 61 62
    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE,
    )
63

Q
Qiao Longfei 已提交
64
    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
65 66

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
F
fengjiayi 已提交
67
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
68

69 70 71 72 73 74
    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table',
    )
75

Q
Qiao Longfei 已提交
76
    usr_age_fc = layers.fc(input=usr_age_emb, size=16)
77 78

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
F
fengjiayi 已提交
79
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
80

81 82 83 84 85 86
    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE,
    )
87

Q
Qiao Longfei 已提交
88
    usr_job_fc = layers.fc(input=usr_job_emb, size=16)
89 90

    concat_embed = layers.concat(
91 92
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1
    )
93

Q
Qiao Longfei 已提交
94
    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
95 96 97 98 99 100 101 102

    return usr_combined_features


def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

F
fengjiayi 已提交
103
    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
104

105 106 107 108 109 110 111
    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE,
    )
112

Q
Qiao Longfei 已提交
113
    mov_fc = layers.fc(input=mov_emb, size=32)
114 115 116

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

117 118 119
    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1
    )
120

121 122 123
    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE
    )
124

125 126 127
    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum"
    )
128 129 130

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

131 132 133
    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1
    )
134

135 136 137
    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE
    )
138

139 140 141 142 143 144 145
    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum",
    )
146 147

    concat_embed = layers.concat(
148 149
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1
    )
150 151

    # FIXME(dzh) : need tanh operator
Q
Qiao Longfei 已提交
152
    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
153 154 155 156 157 158 159 160 161

    return mov_combined_features


def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
Q
Qiao Longfei 已提交
162
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
T
typhoonzero 已提交
163
    scale_infer = layers.scale(x=inference, scale=5.0)
164

F
fengjiayi 已提交
165
    label = layers.data(name='score', shape=[1], dtype='float32')
T
typhoonzero 已提交
166
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
167
    avg_cost = paddle.mean(square_cost)
168

169 170
    return scale_infer, avg_cost

171

武毅 已提交
172
def train(use_cuda, save_dirname, is_local=True):
173 174 175
    scale_infer, avg_cost = model()

    # test program
176
    test_program = fluid.default_main_program().clone(for_test=True)
177

Q
Qiao Longfei 已提交
178
    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
W
Wu Yi 已提交
179
    sgd_optimizer.minimize(avg_cost)
180

181
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
182 183 184

    exe = Executor(place)

185 186 187 188 189 190 191
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE,
    )
    test_reader = paddle.batch(
        paddle.dataset.movielens.test(), batch_size=BATCH_SIZE
    )
192

193
    feed_order = [
194 195 196 197 198 199 200 201
        'user_id',
        'gender_id',
        'age_id',
        'job_id',
        'movie_id',
        'category_id',
        'movie_title',
        'score',
202
    ]
203

武毅 已提交
204 205 206
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

207 208 209 210 211
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
212 213 214 215
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
216 217 218 219 220
                outs = exe.run(
                    program=main_program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost],
                )
武毅 已提交
221 222 223 224
                out = np.array(outs[0])
                if (batch_id + 1) % 10 == 0:
                    avg_cost_set = []
                    for test_data in test_reader():
225 226 227 228 229
                        avg_cost_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[avg_cost],
                        )
武毅 已提交
230 231 232 233 234 235 236 237
                        avg_cost_set.append(avg_cost_np[0])
                        break  # test only 1 segment for speeding up CI

                    # get test avg_cost
                    test_avg_cost = np.array(avg_cost_set).mean()
                    if test_avg_cost < 6.0:
                        # if avg_cost less than 6.0, we think our code is good.
                        if save_dirname is not None:
238
                            fluid.io.save_inference_model(
239 240 241 242 243 244 245 246 247 248 249 250 251
                                save_dirname,
                                [
                                    "user_id",
                                    "gender_id",
                                    "age_id",
                                    "job_id",
                                    "movie_id",
                                    "category_id",
                                    "movie_title",
                                ],
                                [scale_infer],
                                exe,
                            )
武毅 已提交
252 253 254 255 256 257 258 259
                        return

                if math.isnan(float(out[0])):
                    sys.exit("got NaN loss, training failed.")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
260 261
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
262 263 264 265
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
266
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
267
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
268 269
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
270
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
271
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
272 273
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
274 275 276
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
277 278 279 280
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
281 282


283 284 285 286 287 288 289
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

290 291 292
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
293
        # the feed_target_names (the names of variables that will be fed
294 295
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
296 297 298 299 300
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
301 302 303

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
304 305 306
        # Use create_lod_tensor(data, recursive_sequence_lengths, place) API
        # to generate LoD Tensor where `data` is a list of sequences of index
        # numbers, `recursive_sequence_lengths` is the length-based level of detail
307
        # (lod) info associated with `data`.
308 309
        # For example, data = [[10, 2, 3], [2, 3]] means that it contains
        # two sequences of indexes, of length 3 and 2, respectively.
310 311 312
        # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
        # level of detail info, indicating that `data` consists of two sequences
        # of length 3 and 2, respectively.
P
peizhilin 已提交
313
        user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
314 315

        assert feed_target_names[1] == "gender_id"
P
peizhilin 已提交
316
        gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
317 318

        assert feed_target_names[2] == "age_id"
P
peizhilin 已提交
319
        age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
320 321

        assert feed_target_names[3] == "job_id"
P
peizhilin 已提交
322
        job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
323 324

        assert feed_target_names[4] == "movie_id"
P
peizhilin 已提交
325
        movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
326 327

        assert feed_target_names[5] == "category_id"
P
peizhilin 已提交
328
        category_id = fluid.create_lod_tensor(
329 330
            [np.array([10, 8, 9], dtype='int64')], [[3]], place
        )
331 332

        assert feed_target_names[6] == "movie_title"
P
peizhilin 已提交
333
        movie_title = fluid.create_lod_tensor(
334 335 336 337
            [np.array([1069, 4140, 2923, 710, 988], dtype='int64')],
            [[5]],
            place,
        )
338 339 340

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
341 342 343 344 345 346 347 348 349 350 351 352 353 354
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: user_id,
                feed_target_names[1]: gender_id,
                feed_target_names[2]: age_id,
                feed_target_names[3]: job_id,
                feed_target_names[4]: movie_id,
                feed_target_names[5]: category_id,
                feed_target_names[6]: movie_title,
            },
            fetch_list=fetch_targets,
            return_numpy=False,
        )
355
        print("inferred score: ", np.array(results[0]))
356 357 358 359 360 361 362


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the inference model
363
    temp_dir = tempfile.TemporaryDirectory()
364 365 366
    save_dirname = os.path.join(
        temp_dir.name, "recommender_system.inference.model"
    )
367 368 369

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)
370
    temp_dir.cleanup()
371 372 373 374


if __name__ == '__main__':
    main(USE_GPU)