test_recommender_system.py 12.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math
import sys
武毅 已提交
17
import os
Q
Qiao Longfei 已提交
18
import numpy as np
19
import paddle
20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import SGDOptimizer
26

27 28
IS_SPARSE = True
USE_GPU = False
29 30 31 32 33 34 35 36 37
BATCH_SIZE = 256


def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

F
fengjiayi 已提交
38
    uid = layers.data(name='user_id', shape=[1], dtype='int64')
39 40 41

    usr_emb = layers.embedding(
        input=uid,
F
fengjiayi 已提交
42
        dtype='float32',
43
        size=[USR_DICT_SIZE, 32],
Y
Yu Yang 已提交
44
        param_attr='user_table',
45
        is_sparse=IS_SPARSE)
46

Q
Qiao Longfei 已提交
47
    usr_fc = layers.fc(input=usr_emb, size=32)
48 49 50

    USR_GENDER_DICT_SIZE = 2

F
fengjiayi 已提交
51
    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
52 53 54 55

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
Y
Yu Yang 已提交
56
        param_attr='gender_table',
57
        is_sparse=IS_SPARSE)
58

Q
Qiao Longfei 已提交
59
    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
60 61

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
F
fengjiayi 已提交
62
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
63 64 65 66

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
67
        is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
68
        param_attr='age_table')
69

Q
Qiao Longfei 已提交
70
    usr_age_fc = layers.fc(input=usr_age_emb, size=16)
71 72

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
F
fengjiayi 已提交
73
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
74 75 76 77

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
Y
Yu Yang 已提交
78
        param_attr='job_table',
79
        is_sparse=IS_SPARSE)
80

Q
Qiao Longfei 已提交
81
    usr_job_fc = layers.fc(input=usr_job_emb, size=16)
82 83

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
84
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)
85

Q
Qiao Longfei 已提交
86
    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
87 88 89 90 91 92 93 94

    return usr_combined_features


def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

F
fengjiayi 已提交
95
    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
96 97 98

    mov_emb = layers.embedding(
        input=mov_id,
F
fengjiayi 已提交
99
        dtype='float32',
100
        size=[MOV_DICT_SIZE, 32],
Y
Yu Yang 已提交
101
        param_attr='movie_table',
102
        is_sparse=IS_SPARSE)
103

Q
Qiao Longfei 已提交
104
    mov_fc = layers.fc(input=mov_emb, size=32)
105 106 107

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

108 109
    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1)
110 111

    mov_categories_emb = layers.embedding(
Q
Qiao Longfei 已提交
112
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
113 114

    mov_categories_hidden = layers.sequence_pool(
Q
Qiao Longfei 已提交
115
        input=mov_categories_emb, pool_type="sum")
116 117 118

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

119 120
    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1)
121 122

    mov_title_emb = layers.embedding(
Q
Qiao Longfei 已提交
123
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
124 125 126 127 128 129

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
130
        pool_type="sum")
131 132

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
133
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)
134 135

    # FIXME(dzh) : need tanh operator
Q
Qiao Longfei 已提交
136
    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
137 138 139 140 141 142 143 144 145

    return mov_combined_features


def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
Q
Qiao Longfei 已提交
146
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
T
typhoonzero 已提交
147
    scale_infer = layers.scale(x=inference, scale=5.0)
148

F
fengjiayi 已提交
149
    label = layers.data(name='score', shape=[1], dtype='float32')
T
typhoonzero 已提交
150
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
Y
Yu Yang 已提交
151
    avg_cost = layers.mean(square_cost)
152

153 154
    return scale_infer, avg_cost

155

武毅 已提交
156
def train(use_cuda, save_dirname, is_local=True):
157 158 159
    scale_infer, avg_cost = model()

    # test program
160
    test_program = fluid.default_main_program().clone(for_test=True)
161

Q
Qiao Longfei 已提交
162
    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
W
Wu Yi 已提交
163
    sgd_optimizer.minimize(avg_cost)
164

165
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
166 167 168 169 170 171 172

    exe = Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE)
173 174
    test_reader = paddle.batch(
        paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    feeding = {
        'user_id': 0,
        'gender_id': 1,
        'age_id': 2,
        'job_id': 3,
        'movie_id': 4,
        'category_id': 5,
        'movie_title': 6,
        'score': 7
    }

    def func_feed(feeding, data):
        feed_tensors = {}
        for (key, idx) in feeding.iteritems():
190
            tensor = fluid.LoDTensor()
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
            if key != "category_id" and key != "movie_title":
                if key == "score":
                    numpy_data = np.array(map(lambda x: x[idx], data)).astype(
                        "float32")
                else:
                    numpy_data = np.array(map(lambda x: x[idx], data)).astype(
                        "int64")
            else:
                numpy_data = map(lambda x: np.array(x[idx]).astype("int64"),
                                 data)
                lod_info = [len(item) for item in numpy_data]
                offset = 0
                lod = [offset]
                for item in lod_info:
                    offset += item
                    lod.append(offset)
                numpy_data = np.concatenate(numpy_data, axis=0)
                tensor.set_lod([lod])

            numpy_data = numpy_data.reshape([numpy_data.shape[0], 1])
            tensor.set(numpy_data, place)
            feed_tensors[key] = tensor
        return feed_tensors

武毅 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
                outs = exe.run(program=main_program,
                               feed=func_feed(feeding, data),
                               fetch_list=[avg_cost])
                out = np.array(outs[0])
                if (batch_id + 1) % 10 == 0:
                    avg_cost_set = []
                    for test_data in test_reader():
                        avg_cost_np = exe.run(
                            program=test_program,
                            feed=func_feed(feeding, test_data),
                            fetch_list=[avg_cost])
                        avg_cost_set.append(avg_cost_np[0])
                        break  # test only 1 segment for speeding up CI

                    # get test avg_cost
                    test_avg_cost = np.array(avg_cost_set).mean()
                    if test_avg_cost < 6.0:
                        # if avg_cost less than 6.0, we think our code is good.
                        if save_dirname is not None:
                            fluid.io.save_inference_model(save_dirname, [
                                "user_id", "gender_id", "age_id", "job_id",
                                "movie_id", "category_id", "movie_title"
                            ], [scale_infer], exe)
                        return

                if math.isnan(float(out[0])):
                    sys.exit("got NaN loss, training failed.")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
264
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
265 266 267 268 269 270 271 272
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
273 274


275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    def create_lod_tensor(data, lod=None):
        tensor = fluid.LoDTensor()
        if lod is None:
            # Tensor, the shape is [batch_size, 1]
            index = 0
            lod_0 = [index]
            for l in range(len(data)):
                index += 1
                lod_0.append(index)
            lod = [lod_0]
        tensor.set_lod(lod)

        flattened_data = np.concatenate(data, axis=0).astype("int64")
        flattened_data = flattened_data.reshape([len(flattened_data), 1])
        tensor.set(flattened_data, place)
        return tensor

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
        user_id = create_lod_tensor([[1]])

        assert feed_target_names[1] == "gender_id"
        gender_id = create_lod_tensor([[1]])

        assert feed_target_names[2] == "age_id"
        age_id = create_lod_tensor([[0]])

        assert feed_target_names[3] == "job_id"
        job_id = create_lod_tensor([[10]])

        assert feed_target_names[4] == "movie_id"
        movie_id = create_lod_tensor([[783]])

        assert feed_target_names[5] == "category_id"
        category_id = create_lod_tensor([[10], [8], [9]], [[0, 3]])

        assert feed_target_names[6] == "movie_title"
        movie_title = create_lod_tensor([[1069], [4140], [2923], [710], [988]],
                                        [[0, 5]])

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: user_id,
                              feed_target_names[1]: gender_id,
                              feed_target_names[2]: age_id,
                              feed_target_names[3]: job_id,
                              feed_target_names[4]: movie_id,
                              feed_target_names[5]: category_id,
                              feed_target_names[6]: movie_title
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
        print("inferred score: ", np.array(results[0]))
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the inference model
    save_dirname = "recommender_system.inference.model"

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)


if __name__ == '__main__':
    main(USE_GPU)