attention_lstm_op.cc 17.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
16
#include <sys/time.h>
T
tensor-tang 已提交
17 18
#include <string>
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/platform/cpu_info.h"
22

T
tensor-tang 已提交
23 24 25
namespace paddle {
namespace operators {

26
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
                 "Input(C0) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
                 "Input(LSTMWeight) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
                 "Input(LSTMBias) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
                 "Input(AttentionWeight) of AttentionLSTM should not be null.");

T
tensor-tang 已提交
38
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
39
                 "Output(Hidden) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
40
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
41 42 43 44 45 46 47 48 49
                 "Output(Cell) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
                 "Output(AttentionedX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
                 "Output(AttentionFCOut) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
                 "Output(LSTMX) of AttentionLSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
                 "Output(LSTMOUT) of AttentionLSTM should not be null.");
T
tensor-tang 已提交
50 51

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
52
  const int M = x_dims[1];
T
tensor-tang 已提交
53 54
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
55 56 57 58
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
59
                    "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D);
T
tensor-tang 已提交
60 61 62

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
T
tensor-tang 已提交
63 64
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x %d.", 4 * D);
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * D, "LSTMBias dims should be 1 x %d.", 4 * D);
T
tensor-tang 已提交
65 66 67 68

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
T
tensor-tang 已提交
69 70 71 72 73 74 75
  if (ctx->HasInput("H0")) {
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  if (ctx->HasInput("AttentionBias")) {
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalar")) {
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
  }

  if (ctx->HasInput("AttentionScalarBias")) {
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
        ctx->HasInput("AttentionScalar"),
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
113 114
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
115 116 117 118
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
119 120 121 122
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

123
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
124 125 126 127 128 129
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

130
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
131 132 133 134 135
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
136 137 138 139 140
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
141
  AddInput("H0",
142 143 144
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
145
      .AsDispensable();
146 147 148 149
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
150 151
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
152 153 154 155 156 157 158 159 160 161
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
162
      .AsDispensable();
163 164 165 166 167 168 169 170 171 172
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
173 174 175 176 177 178
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
179 180 181 182
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
183
      .AsIntermediate();
184 185
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
186
      .AsIntermediate();
187 188 189 190 191 192 193 194 195
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
196 197 198 199 200
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
201
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
202 203 204 205
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
206
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
207 208 209 210 211
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
212
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
213
  AddComment(R"DOC(
214 215 216 217 218 219 220 221 222 223 224 225 226 227
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
228 229 230
)DOC");
}

231 232 233 234
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
T
tensor-tang 已提交
235 236
    math::vec_add_bias<T, platform::jit::avx>(n, *bias, x, y);
    math::vec_relu<T, platform::jit::avx>(n, y, y);
237
  } else {
T
tensor-tang 已提交
238
    math::vec_relu<T, platform::jit::avx>(n, x, y);
239 240 241
  }
}

T
tensor-tang 已提交
242 243
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
244 245 246 247 248
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
T
tensor-tang 已提交
249 250
  math::vec_add_bias<T, platform::jit::avx>(n, -scalar, x, y);  // sub
  math::vec_exp<T>(n, y, y);                                    // exp
251 252 253 254 255
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
T
tensor-tang 已提交
256
  math::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
257 258
}

T
tensor-tang 已提交
259
template <typename T>
260
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
261 262
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
263
    using DeviceContext = paddle::platform::CPUDeviceContext;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
281 282 283 284 285

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
286 287 288 289
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
290 291 292 293 294 295 296 297 298 299 300
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
    PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1.");
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
301

302
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
317

T
tensor-tang 已提交
318
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
319
    const T* h0_data = h0 ? h0->data<T>() : NULL;
320 321 322 323 324 325 326 327 328
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
329 330 331 332 333 334
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
335 336 337

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
338
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
339 340
                                      atted_x_data, atten_b_data);

T
tensor-tang 已提交
341
    const T* cur_atten_x_data = atted_x_data;
342 343 344 345 346
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
347
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
348
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
349
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
350
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
351
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
352 353
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
354
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
355 356 357
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
358
        if (atten_scalar_data) {
T
tensor-tang 已提交
359
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
360 361 362
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
363
        // 1d. softmax
T
tensor-tang 已提交
364
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
365 366 367 368
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

T
tensor-tang 已提交
369
        /// 2. compute LSTM step
370 371 372 373 374 375 376 377 378 379 380 381 382
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
383
        act_gate(D3, lstm_out_data, lstm_out_data);
384
        // candicate act: tanh
385
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
386 387 388 389 390

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
391
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
392 393 394 395 396

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
397
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
398
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
399

T
tensor-tang 已提交
400
        prev_hidden_data = cur_hidden_out_data;
401 402 403
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
404
      }
405
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
406
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
407 408 409 410 411 412 413 414
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
415 416
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
417 418
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
419 420
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);