primrules.py 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import functools
15
import math
16 17
import operator
import typing
18 19 20

import paddle

21
from . import primops
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
from .primops import (
    add,
    broadcast,
    concat,
    cos,
    div,
    eq,
    erf,
    exp,
    fill_const,
    gather,
    ge,
    gt,
    log,
    matmul,
    mul,
    ne,
    neg,
    reduce_sum,
    reshape,
    scatter_add,
    select,
    set_value,
    sin,
    slice_assign,
    slice_select,
    split,
    sqrt,
    sub,
    tanh,
    transpose,
    bernoulli,
    rsqrt,
    uniform_random,
)
from .primreg import (
    REGISTER_JVP,
    REGISTER_ORIG2PRIM,
    REGISTER_PRIM2ORIG,
    REGISTER_TRANSPOSE,
    lookup_fn,
    lookup_jvp,
    lookup_orig2prim,
    lookup_prim2orig,
    lookup_transpose,
    op_position_inputs,
    op_position_output,
)
70
from .utils import INT_DTYPE_2_STRING, get_output_var_list
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107


def _orig2prim(op, *args):
    _lowerrule = lookup_orig2prim(op.type)
    return _lowerrule(op, *args)


def _prim2orig(op, *args):
    _lowerrule = lookup_prim2orig(op.type)
    return _lowerrule(op, *args)


def _jvp(op, *args):
    _jvprule = lookup_jvp(op.type)
    return _jvprule(op, *args)


def _transpose(op, dot_checker, *args):
    _transposerule = lookup_transpose(op.type)
    return _transposerule(op, dot_checker, *args)


def linear_jvp(op, *args, **kwargs):
    fn = lookup_fn(op.type)
    out_dot = fn(*args, **kwargs)
    return out_dot


## Register orig2prim lower rules
"""
These original ops are fully supported:

elementwise_add
elementwise_sub
elementwise_mul
tanh
fill_zeros_like
108
fill_any_like
109 110 111 112 113
sum
index_select
scale
assign
sqrt
114 115 116 117
log
select
equal
elementwise_pow
118
dropout
119
uniform_random
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

These original ops are partially supported:

matmul_v2
reshape2
concat
slice
p_norm
"""


@REGISTER_ORIG2PRIM('elementwise_add')
def elementwise_add_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    if op.attr('Scale_x') - 1.0 > 1e-5:
136 137 138
        scale_x = fill_const(
            shape=x.shape, dtype=x.dtype, value=op.attr('Scale_x')
        )
139 140
        x = mul(x, scale_x)
    if op.attr('Scale_y') - 1.0 > 1e-5:
141 142 143
        scale_y = fill_const(
            shape=y.shape, dtype=y.dtype, value=op.attr('Scale_y')
        )
144 145 146
        y = mul(y, scale_y)
    z = add(x, y)
    if op.attr('Scale_out') - 1.0 > 1e-5:
147 148 149
        scale_out = fill_const(
            shape=z.shape, dtype=z.dtype, value=op.attr('Scale_out')
        )
150 151 152 153 154 155 156 157 158
        z = mul(z, scale_out)
    return z


@REGISTER_ORIG2PRIM('elementwise_sub')
def elementwise_sub_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    if op.attr('Scale_x') - 1.0 > 1e-5:
159 160 161
        scale_x = fill_const(
            shape=x.shape, dtype=x.dtype, value=op.attr('Scale_x')
        )
162 163
        x = mul(x, scale_x)
    if op.attr('Scale_y') - 1.0 > 1e-5:
164 165 166
        scale_y = fill_const(
            shape=y.shape, dtype=y.dtype, value=op.attr('Scale_y')
        )
167 168 169
        y = mul(y, scale_y)
    z = sub(x, y)
    if op.attr('Scale_out') - 1.0 > 1e-5:
170 171 172
        scale_out = fill_const(
            shape=z.shape, dtype=z.dtype, value=op.attr('Scale_out')
        )
173 174 175 176 177 178 179 180 181
        z = mul(z, scale_out)
    return z


@REGISTER_ORIG2PRIM('elementwise_mul')
def elementwise_mul_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    if op.attr('Scale_x') - 1.0 > 1e-5:
182 183 184
        scale_x = fill_const(
            shape=x.shape, dtype=x.dtype, value=op.attr('Scale_x')
        )
185 186
        x = mul(x, scale_x)
    if op.attr('Scale_y') - 1.0 > 1e-5:
187 188 189
        scale_y = fill_const(
            shape=y.shape, dtype=y.dtype, value=op.attr('Scale_y')
        )
190 191 192
        y = mul(y, scale_y)
    z = mul(x, y)
    if op.attr('Scale_out') - 1.0 > 1e-5:
193 194 195
        scale_out = fill_const(
            shape=z.shape, dtype=z.dtype, value=op.attr('Scale_out')
        )
196 197 198 199
        z = mul(z, scale_out)
    return z


200 201 202 203 204 205 206
@REGISTER_ORIG2PRIM('elementwise_div')
def elementwise_div_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    return primops.div(x, y)


207 208 209 210 211
@REGISTER_ORIG2PRIM('tanh')
def tanh_orig2prim(op, x):
    return tanh(x)


212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
@REGISTER_ORIG2PRIM('sin')
def sin_orig2prim(op, x):
    return sin(x)


@REGISTER_ORIG2PRIM('cos')
def cos_orig2prim(op, x):
    return cos(x)


@REGISTER_ORIG2PRIM('exp')
def exp_orig2prim(op, x):
    return exp(x)


227 228 229 230 231
@REGISTER_ORIG2PRIM('erf')
def erf_orig2prim(op, x):
    return erf(x)


232 233 234 235 236
@REGISTER_ORIG2PRIM('abs')
def abs_orig2prim(op, x):
    return primops.abs(x)


237 238 239 240 241
@REGISTER_ORIG2PRIM('log')
def log_orig2prim(op, x):
    return log(x)


242 243 244 245 246
@REGISTER_ORIG2PRIM('fill_zeros_like')
def fill_zeros_like_orig2prim(op, x):
    return fill_const(value=0.0, shape=x.shape, dtype=x.dtype)


247 248 249 250
@REGISTER_ORIG2PRIM('fill_any_like')
def fill_any_like_orig2prim(op, x):
    if op.attr('dtype') == -1:
        return fill_const(value=op.attr('value'), shape=x.shape, dtype=x.dtype)
251 252 253 254 255
    return fill_const(
        value=op.attr('value'),
        shape=x.shape,
        dtype=paddle.dtype(op.attr('dtype')),
    )
256 257


258
@REGISTER_ORIG2PRIM('fill_constant')
259 260 261
def fill_const_orig2prim(
    op, shape_tensor=None, shape_tensor_list=None, value_tensor=None
):
262 263 264 265
    if shape_tensor or shape_tensor_list or value_tensor:
        raise TypeError(
            'fill_const_orig2prim currently not support Tensor input of shape and value.'
        )
266 267 268 269 270
    return fill_const(
        value=op.attr('value'),
        shape=op.attr('shape'),
        dtype=paddle.dtype(op.attr('dtype')),
    )
271 272


273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
@REGISTER_ORIG2PRIM('sum')
def sum_orig2prim(op, xs):
    x0 = xs[0]
    for x in xs[1:]:
        x0 = add(x0, x)
    return x0


@REGISTER_ORIG2PRIM('index_select')
def index_select_orig2prim(op, index_t, x):
    return gather(x, indextensor=index_t, axis=op.attr('dim'))


@REGISTER_ORIG2PRIM('scale')
def scale_orig2prim(op, scale_t, x):
    if scale_t is None:
289 290 291
        scale_t = fill_const(
            shape=x.shape, dtype=x.dtype, value=op.attr('scale')
        )
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    bias_t = fill_const(shape=x.shape, dtype=x.dtype, value=op.attr('bias'))
    if op.attr('bias_after_scale'):
        return add(mul(x, scale_t), bias_t)
    else:
        return mul(add(x, bias_t), scale_t)


@REGISTER_ORIG2PRIM('assign')
def assign_orig2prim(op, x):
    zero_t = fill_const(shape=x.shape, dtype=x.dtype, value=0.0)
    return add(x, zero_t)


@REGISTER_ORIG2PRIM('sqrt')
def sqrt_orig2prim(op, x):
    return sqrt(x)


J
Jiabin Yang 已提交
310 311 312 313 314
@REGISTER_ORIG2PRIM('rsqrt')
def rsqrt_orig2prim(op, x):
    return rsqrt(x)


315 316 317 318 319 320 321
@REGISTER_ORIG2PRIM('matmul_v2')
def matmul_v2_orig2prim(op, x, y):
    def trans(shape):
        ret = [i for i in range(len(shape))]
        ret[-1], ret[-2] = ret[-2], ret[-1]
        return ret

322 323 324
    assert (
        len(x.shape) < 4 and len(y.shape) < 4
    ), 'Do not support multi batchsize dimensions currently.'
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    if len(x.shape) == 1:
        x = broadcast(x, shape=[1, x.shape[0]])
    if len(y.shape) == 1:
        y = broadcast(y, shape=[y.shape[0], 1])
    if op.attr('trans_x'):
        x = transpose(x, axis=trans(x.shape))
    if op.attr('trans_y'):
        y = transpose(y, axis=trans(y.shape))
    return matmul(x, y)


## NOTE(lml): The second output of reshape2 Xshape, which is only used in reshape2_grad, is meanlingless in new autograd mechanism, thus we use a zero tensor instead.
@REGISTER_ORIG2PRIM('reshape2')
def reshape2_orig2prim(op, shape_t, shape_tl, x):
340 341 342 343 344 345
    assert (
        shape_t is None
    ), 'Can not lower reshape2 into prim ops with shapetensor.'
    assert (
        shape_tl is None
    ), 'Can not lower reshape2 into prim ops with shapetensorlist.'
346
    y, xshape = get_output_var_list(op)
347 348 349
    return reshape(x, shape=y.shape), fill_const(
        shape=xshape.shape, dtype=xshape.dtype, value=0.0
    )
350 351 352 353 354 355 356 357 358 359


@REGISTER_ORIG2PRIM('concat')
def concat_orig2prim(op, axis_t, xs):
    assert axis_t is None, 'Can not lower concat into prim ops with axistensor.'
    return concat(xs, axis=op.attr('axis'))


@REGISTER_ORIG2PRIM('slice')
def slice_orig2prim(op, ends_t, ends_tl, x, starts_t, starts_tl):
360 361 362
    assert (
        starts_t is None
    ), 'Can not lower concat into prim ops with startstensor.'
363
    assert ends_t is None, 'Can not lower concat into prim ops with endstensor.'
364 365 366 367 368 369
    assert (
        starts_tl is None
    ), 'Can not lower concat into prim ops with startstensorlist.'
    assert (
        ends_tl is None
    ), 'Can not lower concat into prim ops with endstensorlist.'
370 371 372 373 374 375 376 377 378 379
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = [1 for _ in starts]
    axis = op.attr('axes')
    y = slice_select(x, starts=starts, ends=ends, strides=strides, axis=axis)
    if op.attr('decrease_axis'):
        y = reshape(y, shape=get_output_var_list(op)[0].shape)
    return y


380 381 382 383
@REGISTER_ORIG2PRIM('sigmoid')
def sigmoid_orig2prim(op, x):
    return div(
        fill_const(value=1.0, shape=x.shape, dtype=x.dtype),
384 385
        (add(fill_const(value=1.0, shape=x.shape, dtype=x.dtype), exp(neg(x)))),
    )
386 387


388 389 390 391 392 393 394 395 396
@REGISTER_ORIG2PRIM('p_norm')
def p_norm_orig2prim(op, x):
    def num_el(shape):
        n = 1
        for s in shape:
            n = n * s
        return n

    assert op.attr(
397 398
        'asvector'
    ), 'Only support lower pnorm when asvector=True currently'
399 400 401 402
    if len(x.shape) > 1:
        x = reshape(x, shape=[num_el(x.shape)])

    if abs(op.attr('porder') - 2.0) < 1e-5:
403
        return sqrt(reduce_sum(mul(x, x), axis=[0]))
404
    elif abs(op.attr('porder') - 1.0) < 1e-5:
405
        return reduce_sum(primops.abs(x), axis=[0])
406 407 408 409
    else:
        raise RuntimeError('Only support lower l2/l1 norm currently')


410 411 412 413 414
@REGISTER_ORIG2PRIM('cast')
def cast_orig2prim(op, x):
    return primops.cast(x, paddle.dtype(op.attr('out_dtype')))


415 416 417 418 419 420 421 422 423 424 425 426 427
# TODO: support broadcast
@REGISTER_ORIG2PRIM('where')
def select_orig2prim(op, condition, x, y):
    return select(condition, x, y)


@REGISTER_ORIG2PRIM('equal')
def equal_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    return eq(x, y)


428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
@REGISTER_ORIG2PRIM('not_equal')
def ne_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    return ne(x, y)


@REGISTER_ORIG2PRIM('greater_than')
def gt_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    return gt(x, y)


@REGISTER_ORIG2PRIM('greater_equal')
def ge_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    return ge(x, y)


449
# paddle.pow API use "elementwise_pow" operator when y is a Tensor.
450 451 452 453 454 455 456 457
@REGISTER_ORIG2PRIM('elementwise_pow')
def elementwise_pow_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    z = primops.pow(x, y)
    return z


458 459 460 461 462 463 464 465 466
# paddle.pow API use "pow" operator when y is a scalar.
@REGISTER_ORIG2PRIM('pow')
def pow_orig2prim(op, x, y):
    # x is factorTensor defined in paddle phi op. Currently it is None.
    return primops.pow(y, fill_const(op.attr('factor'), y.shape, y.dtype))


@REGISTER_ORIG2PRIM('square')
def square_orig2prim(op, x):
467
    return primops.square(x)
468 469


470 471 472 473 474 475 476
@REGISTER_ORIG2PRIM('elementwise_max')
def elementwise_max_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    return primops.max(x, y)


477 478 479 480 481 482 483 484 485 486 487 488 489 490
@REGISTER_ORIG2PRIM('gelu')
def gelu_orig2prim(op, x):
    if op.attr('approximate'):
        cdf = mul(
            fill_const(0.5, x.shape, x.dtype),
            add(
                fill_const(1.0, x.shape, x.dtype),
                tanh(
                    mul(
                        fill_const(math.sqrt(2 / math.pi), x.shape, x.dtype),
                        add(
                            x,
                            mul(
                                fill_const(0.044715, x.shape, x.dtype),
491 492 493 494 495 496 497 498 499
                                primops.pow(
                                    x, fill_const(3.0, x.shape, x.dtype)
                                ),
                            ),
                        ),
                    )
                ),
            ),
        )
500 501 502 503
        return mul(x, cdf)
    else:
        return mul(
            mul(fill_const(0.5, x.shape, x.dtype), x),
504 505 506 507 508
            add(
                fill_const(1.0, x.shape, x.dtype),
                erf(mul(x, fill_const(1 / math.sqrt(2.0), x.shape, x.dtype))),
            ),
        )
509 510


511 512
@REGISTER_ORIG2PRIM('dropout')
def dropout_orig2prim(op, seed_t, x):
513 514 515
    assert (
        seed_t is None
    ), 'Can not lower dropout into prim ops with seedtensor.'
516 517
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=op.attr('dropout_prob'))
    if op.attr('dropout_implementation') == 'upscale_in_train':
518
        if not op.attr('is_test'):
519 520
            out = div(
                mul(x, mask),
521 522
                fill_const(1.0 - op.attr('dropout_prob'), x.shape, x.dtype),
            )
523 524 525 526
            return primops.cast(mask, dtype=paddle.uint8), out
        else:
            return primops.cast(mask, dtype=paddle.uint8), x
    elif op.attr('dropout_implementation') == 'downgrade_in_infer':
527
        if not op.attr('is_test'):
528 529 530
            return primops.cast(mask, dtype=paddle.uint8), mul(x, mask)
        else:
            return primops.cast(mask, dtype=paddle.uint8), mul(
531 532
                x, fill_const(1.0 - op.attr('dropout_prob'), x.shape, x.dtype)
            )
533 534 535 536 537 538
    else:
        raise RuntimeError(
            'Unsupported dropout_implementation, only support upscale_in_train and downgrade_in_infer'
        )


539 540 541 542 543 544 545 546 547 548 549 550 551 552
@REGISTER_ORIG2PRIM('uniform_random')
def uniform_random_orig2prim(op, shape_t, shape_tl):
    if shape_t or shape_tl:
        raise TypeError(
            'uniform_random_orig2prim currently not support ShapeTensor input or ShapeTensorList input.'
        )
    min_value = op.attr('min')
    max_value = op.attr('max')
    seed = op.attr('seed')
    dtype = paddle.dtype(op.attr('dtype'))
    shape = op.attr('shape')
    return uniform_random(dtype, min_value, max_value, seed, shape=shape)


553 554
@REGISTER_ORIG2PRIM('reduce_sum')
def reduce_sum_orig2prim(op, x):
555 556 557 558 559
    axes = (
        tuple(range(0, len(x.shape)))
        if op.attr('reduce_all')
        else op.attr('dim')
    )
560 561 562 563 564
    return reduce_sum(x, axis=axes, keepdim=op.attr('keep_dim'))


@REGISTER_ORIG2PRIM('reduce_mean')
def reduce_mean_orig2prim(op, x):
565 566 567 568 569
    axes = (
        tuple(range(0, len(x.shape)))
        if op.attr('reduce_all')
        else op.attr('dim')
    )
570 571 572 573
    return primops.mean(x, axes, op.attr('keep_dim'))


@REGISTER_ORIG2PRIM('batch_norm')
574 575 576
def batch_norm_orig2prim(
    op, bias, run_mean, momentum_tensor, scale, run_var, x
):
577 578 579 580 581 582
    momentum = op.attr('momentum')
    eps = op.attr('epsilon')
    is_test = op.attr('is_test')
    data_layout = op.attr('data_layout')
    use_global_stats = op.attr('use_global_stats')
    trainable_statistics = op.attr('trainable_statistics')
583 584 585
    reserve_space = (
        None if len(op.output_names) == 5 else get_output_var_list(op)[1]
    )
586

587 588 589
    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )
590 591
    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats

592 593 594 595 596 597 598 599 600 601 602 603
    return primops.batch_norm(
        x,
        feature_axis,
        scale,
        bias,
        run_mean,
        run_var,
        eps=eps,
        momentum=momentum,
        use_run_stat=use_run_stat,
        reserve_space=reserve_space,
    )
604 605


606 607
@REGISTER_ORIG2PRIM('size')
def size_orig2prim(op, x):
608
    # TODO(zhouwei): will change shape [1] to [] to support zero-dim
609 610 611
    return fill_const(
        functools.reduce(operator.mul, x.shape), (1,), paddle.int64
    )
612 613


614
## Register prim2orig lower rules
615 616 617 618 619 620 621 622 623 624
@REGISTER_PRIM2ORIG('add_p')
def add_prim2orig(op, x, y):
    return paddle.add(x, y)


@REGISTER_PRIM2ORIG('sub_p')
def sub_prim2orig(op, x, y):
    return paddle.subtract(x, y)


J
Jiabin Yang 已提交
625 626 627 628 629
@REGISTER_PRIM2ORIG('rsqrt_p')
def rsqrt_prim2orig(op, x):
    return paddle.rsqrt(x)


630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
@REGISTER_PRIM2ORIG('mul_p')
def mul_prim2orig(op, x, y):
    return paddle.multiply(x, y)


@REGISTER_PRIM2ORIG('div_p')
def div_prim2orig(op, x, y):
    return paddle.divide(x, y)


@REGISTER_PRIM2ORIG('sqrt_p')
def sqrt_prim2orig(op, x):
    return paddle.sqrt(x)


@REGISTER_PRIM2ORIG('tanh_p')
def tanh_prim2orig(op, x):
    return paddle.tanh(x)


650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
@REGISTER_PRIM2ORIG('sin_p')
def sin_prim2orig(op, x):
    return paddle.sin(x)


@REGISTER_PRIM2ORIG('cos_p')
def cos_prim2orig(op, x):
    return paddle.cos(x)


@REGISTER_PRIM2ORIG('exp_p')
def exp_prim2orig(op, x):
    return paddle.exp(x)


665 666 667 668 669
@REGISTER_PRIM2ORIG('erf_p')
def erf_prim2orig(op, x):
    return paddle.erf(x)


670 671 672 673 674
@REGISTER_PRIM2ORIG('abs_p')
def abs_prim2orig(op, x):
    return paddle.abs(x)


675 676 677 678 679
@REGISTER_PRIM2ORIG('log_p')
def log_prim2orig(op, x):
    return paddle.log(x)


680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
@REGISTER_PRIM2ORIG('reshape_p')
def reshape_prim2orig(op, x):
    return paddle.reshape(x, shape=op.attr('shape'))


@REGISTER_PRIM2ORIG('broadcast_p')
def broadcast_prim2orig(op, x):
    return paddle.broadcast_to(x, shape=op.attr('shape'))


@REGISTER_PRIM2ORIG('transpose_p')
def transpose_prim2orig(op, x):
    return paddle.transpose(x, perm=op.attr('axis'))


@REGISTER_PRIM2ORIG('split_p')
def split_prim2orig(op, x):
    num_or_sections = op.attr('num_or_sections')
    if len(num_or_sections) == 1:
        num_or_sections = num_or_sections[0]
700 701 702
    return paddle.split(
        x, num_or_sections=num_or_sections, axis=op.attr('axis')
    )
703 704 705 706 707 708 709


@REGISTER_PRIM2ORIG('concat_p')
def concat_prim2orig(op, xs):
    return paddle.concat(xs, axis=op.attr('axis'))


710
@REGISTER_PRIM2ORIG('reduce_sum_p')
711 712 713 714 715 716 717 718 719 720 721
def reduce_prim2orig(op, x):
    return paddle.sum(x, axis=op.attr('axis'), keepdim=op.attr('keepdim'))


@REGISTER_PRIM2ORIG('matmul_p')
def matmul_prim2orig(op, x, y):
    return paddle.matmul(x, y)


@REGISTER_PRIM2ORIG('slice_select_p')
def slice_select_prim2orig(op, x):
722 723 724 725 726 727 728
    return paddle.strided_slice(
        x,
        axes=op.attr('axis'),
        starts=op.attr('starts'),
        ends=op.attr('ends'),
        strides=op.attr('strides'),
    )
729 730 731 732 733


@REGISTER_PRIM2ORIG('slice_assign_p')
def slice_assign_prim2orig(op, x, y):
    x_copy = paddle.assign(x)
734 735 736 737 738 739 740 741 742
    return set_value(
        x_copy,
        y,
        axis=op.attr('axis'),
        starts=op.attr('starts'),
        ends=op.attr('ends'),
        strides=op.attr('strides'),
        out=x_copy,
    )
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759


@REGISTER_PRIM2ORIG('gather_p')
def gather_prim2orig(op, index_t, x):
    return paddle.gather(x, index_t, axis=op.attr('axis'))


@REGISTER_PRIM2ORIG('scatter_add_p')
def scatter_add_prim2orig(op, index_t, x, y):
    assert op.attr('axis') == 0, 'Only support axis==0 currently'
    zeros = paddle.zeros_like(x=x, dtype=x.dtype)
    tmp = paddle.scatter(x=zeros, index=index_t, updates=y, overwrite=False)
    return paddle.add(x, tmp)


@REGISTER_PRIM2ORIG('fill_constant_p')
def fill_constant_prim2orig(op):
760 761 762 763 764
    return paddle.full(
        shape=op.attr('shape'),
        fill_value=op.attr('value'),
        dtype=INT_DTYPE_2_STRING[op.attr('dtype')],
    )
765 766


767 768
@REGISTER_PRIM2ORIG('bernoulli_p')
def bernoulli_prim2orig(op):
769 770 771 772 773
    t = paddle.full(
        shape=op.attr('shape'),
        fill_value=op.attr('p'),
        dtype=INT_DTYPE_2_STRING[op.attr('dtype')],
    )
774 775 776
    return paddle.bernoulli(t)


777 778
@REGISTER_PRIM2ORIG('uniform_random_p')
def uniform_random_prim2orig(op):
779 780 781 782 783 784 785
    return paddle.uniform(
        shape=op.attr('shape'),
        dtype=INT_DTYPE_2_STRING[op.attr('dtype')],
        min=op.attr('min'),
        max=op.attr('max'),
        seed=op.attr('seed'),
    )
786 787


788 789 790 791 792 793 794 795 796 797
@REGISTER_PRIM2ORIG('select_p')
def select_prim2orig(op, condition, x, y):
    return paddle.where(condition, x, y)


@REGISTER_PRIM2ORIG('eq_p')
def eq_prim2orig(op, x, y):
    return paddle.equal(x, y)


798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
@REGISTER_PRIM2ORIG('gt_p')
def gt_prim2orig(op, x, y):
    return paddle.greater_than(x, y)


@REGISTER_PRIM2ORIG('ge_p')
def ge_prim2orig(op, x, y):
    return paddle.greater_equal(x, y)


@REGISTER_PRIM2ORIG('ne_p')
def ne_prim2orig(op, x, y):
    return paddle.not_equal(x, y)


813 814 815 816 817
@REGISTER_PRIM2ORIG('pow_p')
def pow_prim2orig(op, x, y):
    return paddle.pow(x, y)


818 819 820 821 822
@REGISTER_PRIM2ORIG('max_p')
def max_prim2orig(op, x, y):
    return paddle.maximum(x, y)


823 824 825 826 827
@REGISTER_PRIM2ORIG('cast_p')
def cast_prim2orig(op, x):
    return paddle.cast(x, paddle.dtype(op.attr('dtype')))


828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
## Register linearize rules
@REGISTER_JVP('add_p')
def add_jvp(op, x_dot, y_dot):
    if x_dot is None:
        return y_dot
    elif y_dot is None:
        return x_dot
    else:
        return linear_jvp(op, x_dot, y_dot)


@REGISTER_JVP('sub_p')
def sub_jvp(op, x_dot, y_dot):
    if x_dot is None:
        return neg(y_dot)
    elif y_dot is None:
        return x_dot
    else:
        return linear_jvp(op, x_dot, y_dot)


@REGISTER_JVP('mul_p')
def mul_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, y = op_position_inputs(op)
    if x_dot is None:
        return mul(x, y_dot)
    elif y_dot is None:
        return mul(x_dot, y)
    else:
        t1, t2 = mul(x_dot, y), mul(x, y_dot)
        z_dot = add(t1, t2)
        return z_dot


@REGISTER_JVP('div_p')
def div_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, y = op_position_inputs(op)
    if y_dot is None:
        return div(x_dot, y)
    elif x_dot is None:
        return neg(div(mul(x, y_dot), mul(y, y)))
    else:
        t1 = div(x_dot, y)
        t2 = div(mul(x, y_dot), mul(y, y))
        return sub(t1, t2)


@REGISTER_JVP('sqrt_p')
def sqrt_jvp(op, x_dot):
    if x_dot is None:
        return None
    y = op_position_output(op)
    c2 = fill_const(value=2.0, shape=y.shape, dtype=y.dtype)
    y_dot = div(x_dot, mul(c2, y))
    return y_dot


@REGISTER_JVP('tanh_p')
def tanh_jvp(op, x_dot):
    if x_dot is None:
        return None
    y = op_position_output(op)
    c1 = fill_const(value=1.0, shape=y.shape, dtype=y.dtype)
    y_dot = mul(x_dot, sub(c1, mul(y, y)))
    return y_dot


899 900 901 902
@REGISTER_JVP('sin_p')
def sin_jvp(op, x_dot):
    if x_dot is None:
        return None
903
    (x,) = op_position_inputs(op)
904 905 906 907 908 909 910
    return mul(x_dot, cos(x))


@REGISTER_JVP('cos_p')
def cos_jvp(op, x_dot):
    if x_dot is None:
        return None
911
    (x,) = op_position_inputs(op)
912 913 914 915 916 917 918 919 920 921 922
    return mul(x_dot, neg(sin(x)))


@REGISTER_JVP('exp_p')
def exp_jvp(op, x_dot):
    if x_dot is None:
        return None
    y = op_position_output(op)
    return mul(x_dot, y)


923 924 925 926
@REGISTER_JVP('erf_p')
def erf_jvp(op, x_dot):
    if x_dot is None:
        return None
927
    (x,) = op_position_inputs(op)
928
    return mul(
929 930 931
        fill_const(2.0 / math.sqrt(math.pi), x.shape, x.dtype),
        mul(x_dot, exp(neg(primops.pow(x, fill_const(2.0, x.shape, x.dtype))))),
    )
932 933


934 935 936 937
@REGISTER_JVP('abs_p')
def abs_jvp(op, x_dot):
    if x_dot is None:
        return None
938 939
    (x,) = op_position_inputs(op)
    return select(ge(x, fill_const(0.0, x.shape, x.dtype)), x_dot, neg(x_dot))
940 941


942 943 944 945
@REGISTER_JVP('log_p')
def log_jvp(op, x_dot):
    if x_dot is None:
        return None
946
    (x,) = op_position_inputs(op)
947 948 949
    return div(x_dot, x)


950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
@REGISTER_JVP('reshape_p')
def reshape_jvp(op, x_dot):
    if x_dot is None:
        return None
    shape = op.attr('shape')
    return linear_jvp(op, x_dot, shape=shape)


@REGISTER_JVP('broadcast_p')
def broadcast_jvp(op, x_dot):
    if x_dot is None:
        return None
    shape = op.attr('shape')
    return linear_jvp(op, x_dot, shape=shape)


@REGISTER_JVP('transpose_p')
def transpose_jvp(op, x_dot):
    if x_dot is None:
        return None
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, axis=axis)


@REGISTER_JVP('split_p')
def split_jvp(op, x_dot):
    if x_dot is None:
        return None
    num_or_sections = op.attr('num_or_sections')
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, num_or_sections=num_or_sections, axis=axis)


@REGISTER_JVP('concat_p')
def concat_jvp(op, xs_dot):
    if xs_dot is None:
        return None
    axis = op.attr('axis')
    return linear_jvp(op, xs_dot, axis=axis)


991 992
@REGISTER_JVP('reduce_sum_p')
def reduce_sum_jvp(op, x_dot):
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    if x_dot is None:
        return None
    axis = op.attr('axis')
    keepdim = op.attr('keepdim')
    return linear_jvp(op, x_dot, axis=axis, keepdim=keepdim)


@REGISTER_JVP('matmul_p')
def matmul_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, y = op_position_inputs(op)
    if x_dot is None:
        return matmul(x, y_dot)
    elif y_dot is None:
        return matmul(x_dot, y)
    else:
        t1 = matmul(x, y_dot)
        t2 = matmul(x_dot, y)
        return add(t1, t2)


@REGISTER_JVP('slice_select_p')
def slice_select_jvp(op, x_dot):
    if x_dot is None:
        return x_dot
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
1023 1024 1025
    return linear_jvp(
        op, x_dot, axis=axis, starts=starts, ends=ends, strides=strides
    )
1026 1027 1028 1029


@REGISTER_JVP('slice_assign_p')
def slice_assign_jvp(op, x_dot, y_dot):
C
Charles-hit 已提交
1030 1031 1032 1033
    x, y = op_position_inputs(op)
    assert (
        x_dot is not None or y_dot is not None
    ), "x_dot and y_dot can't be None at the same time. "
1034 1035 1036 1037
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
C
Charles-hit 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    if x_dot is None:
        return linear_jvp(
            op,
            fill_const(value=0.0, shape=x.shape, dtype=x.dtype),
            y_dot,
            axis=axis,
            starts=starts,
            ends=ends,
            strides=strides,
        )
    elif y_dot is None:
        return linear_jvp(
            op,
            x_dot,
            fill_const(value=0.0, shape=y.shape, dtype=y.dtype),
            axis=axis,
            starts=starts,
            ends=ends,
            strides=strides,
        )
    return add(
        linear_jvp(
            op,
            fill_const(value=0.0, shape=x.shape, dtype=x.dtype),
            y_dot,
            axis=axis,
            starts=starts,
            ends=ends,
            strides=strides,
        ),
        linear_jvp(
            op,
            x_dot,
            fill_const(value=0.0, shape=y.shape, dtype=y.dtype),
            axis=axis,
            starts=starts,
            ends=ends,
            strides=strides,
        ),
1077
    )
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097


@REGISTER_JVP('gather_p')
def gather_jvp(op, x_dot, indextensor):
    if x_dot is None:
        return None
    _, indextensor = op_position_inputs(op)
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, indextensor, axis=axis)


@REGISTER_JVP('scatter_add_p')
def scatter_add_jvp(op, x_dot, y_dot):
    if x_dot is None:
        return None
    _, _, indextensor = op_position_inputs(op)
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, y_dot, indextensor, axis=axis)


1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
@REGISTER_JVP('select_p')
def select_jvp(op, cond_dot, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None

    cond, x, y = op_position_inputs(op)
    if x_dot is None:
        x_dot = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)
    if y_dot is None:
        y_dot = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)
    return select(cond, x_dot, y_dot)


@REGISTER_JVP('eq_p')
def eq_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, _ = op_position_inputs(op)
1116
    z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype)
1117 1118 1119
    return z_dot


1120 1121 1122 1123 1124
@REGISTER_JVP('gt_p')
def gt_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, _ = op_position_inputs(op)
1125
    z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype)
1126 1127 1128 1129 1130 1131 1132 1133
    return z_dot


@REGISTER_JVP('ge_p')
def ge_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, _ = op_position_inputs(op)
1134
    z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype)
1135 1136 1137 1138 1139 1140 1141 1142
    return z_dot


@REGISTER_JVP('ne_p')
def ne_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, _ = op_position_inputs(op)
1143
    z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype)
1144 1145 1146
    return z_dot


1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
@REGISTER_JVP('pow_p')
def pow_jvp(op, x_dot, y_dot):
    def _compute_t1(x, y):
        zero_y = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)
        one_y = fill_const(value=1.0, shape=y.shape, dtype=y.dtype)

        cond = eq(y, zero_y)
        new_y = select(cond, one_y, sub(y, one_y))
        t1 = mul(x_dot, mul(y, primops.pow(x, new_y)))
        return t1

    if x_dot is None and y_dot is None:
        return None
    x, y = op_position_inputs(op)
    z = op_position_output(op)

    if y_dot is None:
        return _compute_t1(x, y)
    elif x_dot is None:
        return mul(y_dot, mul(log(x), z))
    else:
        t1, t2 = _compute_t1(x, y), mul(y_dot, mul(log(x), z))
        z_dot = add(t1, t2)
        return z_dot


1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
@REGISTER_JVP('max_p')
def max_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None

    x, y = op_position_inputs(op)
    z = op_position_output(op)
    z_zeros = fill_const(value=0.0, shape=z.shape, dtype=z.dtype)

    # To make the grad of max_p consistent with paddle.maximum when x==y,
    # we just let z_dot = y_dot when compute z_dot to y and x==y,
    # instead of using balance_eq like Jax.
    if y_dot is None:
        return select(eq(y, z), z_zeros, x_dot)
    elif x_dot is None:
        return select(eq(y, z), y_dot, z_zeros)
    else:
        return select(eq(y, z), y_dot, x_dot)


1193 1194 1195 1196 1197 1198
@REGISTER_JVP('cast_p')
def cast_jvp(op, x_dot):
    y = op_position_output(op)
    return primops.cast(x_dot, y.dtype)


J
Jiabin Yang 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
@REGISTER_JVP('rsqrt_p')
def rsqrt_jvp(op, x_dot):
    if x_dot is None:
        return None
    y = op_position_output(op)
    x = op_position_inputs(op)
    c2 = fill_const(value=-2.0, shape=y.shape, dtype=y.dtype)
    y_dot = mul(x_dot, div(div(y, x), c2))
    return y_dot


1210 1211 1212 1213 1214 1215 1216 1217
## Register transpose rules


@REGISTER_TRANSPOSE('add_p')
def add_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) or check_dot(y), (
        f'(check_dot(x) or check_dot(y)) must be True, '
1218 1219
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.'
    )
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    x_bar = z_bar if check_dot(x) else None
    y_bar = z_bar if check_dot(y) else None
    return x_bar, y_bar


@REGISTER_TRANSPOSE('sub_p')
def sub_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) or check_dot(y), (
        f'(check_dot(x) or check_dot(y)) must be True, '
1230 1231
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.'
    )
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    x_bar = z_bar if check_dot(x) else None
    y_bar = neg(z_bar) if check_dot(y) else None
    return x_bar, y_bar


@REGISTER_TRANSPOSE('mul_p')
def mul_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) ^ check_dot(y), (
        f'(check_dot(x) ^ check_dot(y)) must be True, '
1242 1243
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.'
    )
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    if check_dot(x):
        return mul(z_bar, y), None
    else:
        return None, mul(x, z_bar)


@REGISTER_TRANSPOSE('div_p')
def div_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert not check_dot(y), 'check_dot(y) must be False'
    x_bar = div(z_bar, y) if check_dot(x) else None
    return x_bar, None


@REGISTER_TRANSPOSE('reshape_p')
def reshape_transpose(op, check_dot, y_bar):
1260
    (x,) = op_position_inputs(op)
1261 1262 1263 1264 1265 1266
    assert check_dot(x), 'check_dot(x) must be True'
    return reshape(y_bar, shape=x.shape)


@REGISTER_TRANSPOSE('broadcast_p')
def broadcast_transpose(op, check_dot, y_bar):
1267
    (x,) = op_position_inputs(op)
1268 1269 1270 1271 1272 1273
    assert check_dot(x), 'check_dot(x) must be True'
    bat = len(y_bar.shape) - len(x.shape)
    axis = list(range(bat))
    keepdim = [(bat + i) for i, s in enumerate(x.shape) if s == 1]
    axis += keepdim
    # TODO: Change it. keepdim boolean
1274
    out = reduce_sum(y_bar, axis=axis, keepdim=False)
1275 1276 1277 1278 1279
    return reshape(out, x.shape)


@REGISTER_TRANSPOSE('transpose_p')
def transpose_transpose(op, check_dot, y_bar):
1280
    (x,) = op_position_inputs(op)
1281 1282 1283 1284 1285 1286 1287 1288 1289
    assert check_dot(x), 'check_dot(x) must be True'
    axis = op.attr('axis')
    reordered = sorted((k, i) for i, k in enumerate(axis))
    axis = [i for k, i in reordered]
    return transpose(y_bar, axis=axis)


@REGISTER_TRANSPOSE('split_p')
def split_transpose(op, check_dot, ys_bar):
1290
    (x,) = op_position_inputs(op)
1291 1292 1293 1294 1295 1296
    assert check_dot(x), 'check_dot(x) must be True'
    return concat(ys_bar, axis=op.attr('axis'))


@REGISTER_TRANSPOSE('concat_p')
def concat_transpose(op, check_dot, y_bar):
1297
    (xs,) = op_position_inputs(op)
1298 1299
    if not isinstance(xs, typing.Sequence):
        xs = [xs]
1300 1301 1302 1303
    for x in xs:
        assert check_dot(x), 'check_dot(x) must be True'
    axis = op.attr('axis')
    sections = [x.shape[axis] for x in xs]
1304 1305
    if len(sections) == 1:
        return y_bar
1306 1307 1308
    return split(y_bar, num_or_sections=sections, axis=axis)


1309 1310
@REGISTER_TRANSPOSE('reduce_sum_p')
def reduce_sum_transpose(op, check_dot, y_bar):
1311
    (x,) = op_position_inputs(op)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    assert check_dot(x), 'check_dot(x) must be True'
    axes = op.attr('axis')
    shape = tuple(1 if i in axes else size for i, size in enumerate(x.shape))
    t = reshape(y_bar, shape=shape)
    return broadcast(t, shape=x.shape)


@REGISTER_TRANSPOSE('matmul_p')
def matmul_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) ^ check_dot(y), (
        f'(check_dot(x) ^ check_dot(y)) must be True, '
1324 1325
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.'
    )
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    # TODO: replace it. this is hacky
    axis = [1, 0] if len(x.shape) == 2 else [0, 2, 1]
    if check_dot(x):
        return matmul(z_bar, transpose(y, axis=axis)), None
    else:
        return None, matmul(transpose(x, axis=axis), z_bar)


@REGISTER_TRANSPOSE('slice_select_p')
def slice_select_transpose(op, check_dot, y_bar):
1336
    (x,) = op_position_inputs(op)
1337 1338 1339 1340 1341 1342
    assert check_dot(x), 'check_dot(x) must be True'
    zeros = fill_const(value=0.0, shape=x.shape, dtype=x.dtype)
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
1343 1344 1345
    return slice_assign(
        zeros, y_bar, axis=axis, starts=starts, ends=ends, strides=strides
    )
1346 1347 1348 1349 1350


@REGISTER_TRANSPOSE('slice_assign_p')
def slice_assign_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
C
Charles-hit 已提交
1351 1352
    assert check_dot(x) ^ check_dot(y), (
        f'(check_dot(x) ^ check_dot(y)) must be True, '
1353 1354
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.'
    )
1355 1356 1357 1358 1359
    zeros = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
C
Charles-hit 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    if check_dot(x):
        return (
            slice_assign(
                z_bar,
                zeros,
                axis=axis,
                starts=starts,
                ends=ends,
                strides=strides,
            ),
            None,
        )
    return None, slice_select(
1373 1374
        z_bar, axis=axis, starts=starts, ends=ends, strides=strides
    )
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392


@REGISTER_TRANSPOSE('gather_p')
def gather_transpose(op, check_dot, y_bar):
    x, indextensor = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    axis = op.attr('axis')
    zeros = fill_const(0.0, x.shape, x.dtype)
    x_bar = scatter_add(zeros, y_bar, indextensor, axis=axis)
    indextensor_bar = None
    return x_bar, indextensor_bar


@REGISTER_TRANSPOSE('scatter_add_p')
def scatter_add_transpose(op, check_dot, z_bar):
    x, y, indextensor = op_position_inputs(op)
    assert check_dot(x) and check_dot(y), (
        f'(check_dot(x) and check_dot(y)) must be True, '
1393 1394
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.'
    )
1395 1396 1397 1398 1399 1400
    axis = op.attr('axis')
    zeros = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)
    x_bar = scatter_add(z_bar, zeros, indextensor, axis=axis)
    y_bar = gather(z_bar, indextensor, axis=axis)
    indextensor_bar = None
    return x_bar, y_bar, indextensor_bar
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413


@REGISTER_TRANSPOSE('select_p')
def select_transpose(op, check_dot, z_bar):
    cond, x, y = op_position_inputs(op)
    assert check_dot(cond) or check_dot(x) or check_dot(y), (
        f'check_dot(cond) ^ (check_dot(x) ^ check_dot(y)) must be True, '
        f'but check_dot(cond)={check_dot(cond)}, check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.'
    )

    zeros_x = fill_const(value=0.0, shape=x.shape, dtype=x.dtype)
    zeros_y = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)

1414 1415 1416 1417 1418
    cond_bar = (
        fill_const(value=0.0, shape=y.shape, dtype=cond.dtype)
        if check_dot(cond)
        else None
    )
1419 1420 1421 1422
    x_bar = select(cond, z_bar, zeros_x) if check_dot(x) else None
    y_bar = select(cond, zeros_y, z_bar) if check_dot(y) else None

    return cond_bar, x_bar, y_bar
1423 1424 1425 1426


@REGISTER_TRANSPOSE('cast_p')
def cast_transpose(op, check_dot, y_bar):
1427
    (x,) = op_position_inputs(op)
1428
    return primops.cast(y_bar, x.dtype)