test_numel_op.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle


class TestNumelOp(OpTest):
    def setUp(self):
        self.op_type = "size"
        self.init()
        x = np.random.random((self.shape)).astype("float64")
27 28 29
        self.inputs = {
            'Input': x,
        }
30
        # TODO(zhouwei): will change shape [1] to [] to support zero-dim
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        self.outputs = {'Out': np.array([np.size(x)])}

    def test_check_output(self):
        self.check_output()

    def init(self):
        self.shape = (6, 56, 8, 55)


class TestNumelOp1(TestNumelOp):
    def init(self):
        self.shape = (11, 66)


class TestNumelOp2(TestNumelOp):
    def init(self):
47
        self.shape = (0,)
48 49


50
class TestNumelAPI(unittest.TestCase):
51 52 53 54 55 56
    def test_numel_static(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            shape1 = [2, 1, 4, 5]
            shape2 = [1, 4, 5]
57 58
            x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1')
            x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2')
59 60 61 62 63
            input_1 = np.random.random(shape1).astype("int32")
            input_2 = np.random.random(shape2).astype("int32")
            out_1 = paddle.numel(x_1)
            out_2 = paddle.numel(x_2)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
64 65 66 67 68 69 70
            res_1, res_2 = exe.run(
                feed={
                    "x_1": input_1,
                    "x_2": input_2,
                },
                fetch_list=[out_1, out_2],
            )
71
            # TODO(zhouwei): will change shape [1] to [] to support zero-dim
72 73 74 75 76 77
            assert np.array_equal(
                res_1, np.array([np.size(input_1)]).astype("int64")
            )
            assert np.array_equal(
                res_2, np.array([np.size(input_2)]).astype("int64")
            )
78 79 80 81 82

    def test_numel_imperative(self):
        paddle.disable_static(paddle.CPUPlace())
        input_1 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_2 = np.random.random([1, 4, 5]).astype("int32")
83 84
        x_1 = paddle.to_tensor(input_1)
        x_2 = paddle.to_tensor(input_2)
85 86
        out_1 = paddle.numel(x_1)
        out_2 = paddle.numel(x_2)
87 88
        assert np.array_equal(out_1.numpy().item(0), np.size(input_1))
        assert np.array_equal(out_2.numpy().item(0), np.size(input_2))
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        paddle.enable_static()

    def test_error(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):

            def test_x_type():
                shape = [1, 4, 5]
                input_1 = np.random.random(shape).astype("int32")
                out_1 = paddle.numel(input_1)

            self.assertRaises(TypeError, test_x_type)


if __name__ == '__main__':
    unittest.main()