dist_matmul.py 118.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
C
caozhou 已提交
16

Z
zhaoyingli 已提交
17
from .common import infer_shape
18
from .common import DistributedOperatorImplContainer
19
from .common import DistributedOperatorImpl
20
from .common import register_distributed_operator_impl_container
21
from .common import register_distributed_operator_impl
22
from .common import gradient_synchronization
23
from .common import is_parameter_related, set_comm_op_dist_attr_for_program
24 25 26 27 28
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
29
from ..utils import set_dist_op_desc_original_id
30
from ..dist_attribute import OperatorDistributedAttribute
31 32
from paddle.fluid import core, unique_name
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
33
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
34
from ..process_group import new_process_group
35
from ..utils import _get_comm_group, _get_corresponding_rank
36
from .dist_default import DistributedDefaultImpl0
C
caozhou 已提交
37 38
from ..cost import build_comp_desc_from_dist_op, build_comm_desc_from_dist_op, build_dp_costs
from ..cost import build_comm_costs_from_descs, build_comp_costs_from_descs
39
from ..cost import MatmulV2OpCost, MatmulOpCost, MulOpCost
C
caozhou 已提交
40
from ..cost import MatmulV2GradOpCost, MatmulGradOpCost, MulGradOpCost
41
from paddle.distributed.auto_parallel.cost.comm_op_cost import AllreduceSumOpCost, IdentityOpCost
42 43


44 45 46 47 48 49 50 51 52
def trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping):
    if trans_x:
        x_dims_mapping[-1], x_dims_mapping[-2] = x_dims_mapping[
            -2], x_dims_mapping[-1]
    if trans_y:
        y_dims_mapping[-1], y_dims_mapping[-2] = y_dims_mapping[
            -2], y_dims_mapping[-1]


53
def copy_op_with_new_input_output(ctx, block, src_op, **kwargs):
54
    dist_op_desc = block.append_op(type='nop').desc
55
    dist_op_desc.copy_from(src_op.desc)
56
    set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
57 58 59 60 61 62 63 64 65 66
    for input_name in src_op.desc.input_names():
        assert input_name in kwargs
        dist_op_desc.set_input(input_name, kwargs[input_name])
    for output_name in src_op.desc.output_names():
        assert input_name in kwargs
        dist_op_desc.set_output(output_name, kwargs[output_name])

    return dist_op_desc


67
def _update_dims_mapping_for_matmul(dist_op):
68
    changed = False
69 70
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
71 72 73
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
C
caozhou 已提交
74 75 76 77 78 79 80 81
    trans_x = None
    trans_y = None
    if op_desc.type() == "matmul_v2":
        trans_x = op_desc.attr('trans_x')
        trans_y = op_desc.attr('trans_y')
    elif op_desc.type() == "matmul":
        trans_x = op_desc.attr('transpose_X')
        trans_y = op_desc.attr('transpose_Y')
82 83 84 85 86 87 88 89 90
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
C
caozhou 已提交
91
        assert trans_x is False
92
        x_dims_mapping.insert(0, -1)
C
caozhou 已提交
93
        out_dims_mapping.insert(out_dims_mapping_len - 1, 0)
94
    if y_dims_mapping_len == 1:
C
caozhou 已提交
95
        assert trans_y is False
96
        y_dims_mapping.insert(1, -1)
C
caozhou 已提交
97
        out_dims_mapping.insert(out_dims_mapping_len, 0)
98

99 100
    trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping)

C
caozhou 已提交
101 102 103
    new_x_dims_mapping_len = len(x_dims_mapping)
    new_y_dims_mapping_len = len(y_dims_mapping)
    new_out_dims_mapping_len = len(out_dims_mapping)
104
    # Deal with dim > 2 and take care of broadcasting
C
caozhou 已提交
105
    if new_out_dims_mapping_len > 2:
106 107 108 109
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

C
caozhou 已提交
110
        for i in range(new_out_dims_mapping_len - new_x_dims_mapping_len):
111
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
C
caozhou 已提交
112
        for i in range(new_x_dims_mapping_len - 2):
113 114
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

C
caozhou 已提交
115
        for i in range(new_out_dims_mapping_len - new_y_dims_mapping_len):
116
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
C
caozhou 已提交
117
        for i in range(new_y_dims_mapping_len - 2):
118 119
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

C
caozhou 已提交
120
        for i in range(new_out_dims_mapping_len - 2):
121 122 123 124 125 126
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
127
        if compatible_dims_mapping is None:
128 129
            trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping,
                                   y_dims_mapping)
130
            return False
131

C
caozhou 已提交
132 133
        for i in range(new_x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - new_x_dims_mapping_len)
134 135 136 137
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

C
caozhou 已提交
138 139
        for i in range(new_y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - new_y_dims_mapping_len)
140 141 142 143
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

C
caozhou 已提交
144
        for i in range(new_out_dims_mapping_len - 2):
145 146 147 148
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

149
    # The following which uses negative index can be work
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

166
    trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping)
C
caozhou 已提交
167

168
    # Remove unnecessary dim mapping to make sure the length of dims_mapping is same as its tensor
169 170
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
C
caozhou 已提交
171
        out_dims_mapping.pop(out_dims_mapping_len - 1)
172 173
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)
C
caozhou 已提交
174
        out_dims_mapping.pop(out_dims_mapping_len)
175 176 177 178 179 180 181 182

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


183 184 185 186 187 188
def _is_auto_compatible_for_matmul(dist_op):
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
189 190 191 192 193 194 195 196 197
    trans_x = None
    trans_y = None
    if op_desc.type() == "matmul_v2":
        trans_x = op_desc.attr('trans_x')
        trans_y = op_desc.attr('trans_y')
    elif op_desc.type() == "matmul":
        trans_x = op_desc.attr('transpose_X')
        trans_y = op_desc.attr('transpose_Y')

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    # Deep copy these dims_mappings for keeping them unchanged.
    x_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(x_name))
    y_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(y_name))
    out_dims_mapping = copy.deepcopy(
        op_dist_attr.get_output_dims_mapping(out_name))
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

213
    trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping)
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    # Deal with dim > 2 and take care of broadcasting
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

234 235
        is_same = ((broadcast_x_dims_mapping == broadcast_y_dims_mapping)
                   and (broadcast_x_dims_mapping == broadcast_out_dims_mapping))
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        if not is_same:
            return False

    # The following which uses negative index can be work
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    is_same = (x_dims_mapping[-1] == y_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (x_dims_mapping[-2] == out_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (y_dims_mapping[-1] == out_dims_mapping[-1])
    if not is_same:
        return False

    return True


256 257 258 259
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

260
    dist_op_context = ctx.dist_op_context
261 262 263
    main_block = dist_op_context.work_block
    backward_op = dist_op_context.cur_src_op
    rank_id = dist_op_context.rank_id
264
    dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
265 266 267 268
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
269 270
    if rank_id not in dist_attr.process_mesh.processes:
        rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh, rank_id)
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')
    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
295
    Y_var = main_block._var_recursive(kwargs['Y'][0])
296 297 298
    Out_grad = main_block.var(kwargs['Out@GRAD'][0])
    Y_grad = main_block.var(kwargs['Y@GRAD'][0])

J
JZ-LIANG 已提交
299 300 301
    assert not is_parameter_related(
        X_var.name, main_block
    ), "left operand(X) [{}] of dist matmul should not be parameter".format(
302 303
        X_var.name)

304
    X_var_dims_mapping = dist_attr.get_input_dims_mapping(X_var.name)
305 306 307
    Y_var_dim_mapping = dist_attr.get_input_dims_mapping(Y_var.name)
    process_mesh_shape = dist_attr.process_mesh.topology
    process_mesh_group = dist_attr.process_mesh.processes
308 309 310 311 312 313 314 315 316 317 318 319 320

    trans_x = None
    trans_y = None
    if backward_op.desc.type() == "matmul_v2_grad":
        trans_x = backward_op.desc.attr('trans_x')
        trans_y = backward_op.desc.attr('trans_y')
    elif backward_op.desc.type() == "matmul_grad":
        trans_x = backward_op.desc.attr('transpose_X')
        trans_y = backward_op.desc.attr('transpose_Y')

    if trans_y:
        trans_x_y_dims_mapping(False, True, None, Y_var_dim_mapping)

321 322 323 324
    # assert len(
    #     Y_var_dim_mapping
    # ) == 2, "dist matmual only support Y operand with 2 dims now but Y({})'s dim is [{}]".format(
    #     Y_var.name, Y_var_dim_mapping)
325 326 327 328 329 330
    Y_var_partitioned = False
    for dim in Y_var_dim_mapping:
        if dim >= 0 and process_mesh_shape[dim] > 0:
            Y_var_partitioned = True
            break

J
JZ-LIANG 已提交
331
    if is_parameter_related(Y_var.name, main_block) and Y_var_partitioned:
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

        if Y_var_dim_mapping[0] >= 0:
            # row parallel: c_identity + matmul
            assert Y_var_dim_mapping[1] < 0
            parallel_axis = Y_var_dim_mapping[0]

            check_variable_and_dtype(
                Out_grad, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

            intermediate_var_0 = main_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])) + "@GRAD",
                dtype=Out_grad.dtype,
                shape=Out_grad.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=Out_grad.stop_gradient)

            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
            assert out_grad_dist_attr is not None
            ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                 out_grad_dist_attr)

358 359 360
            group_ranks = _get_comm_group(process_mesh_group,
                                          process_mesh_shape, parallel_axis,
                                          rank_id)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            group = new_process_group(group_ranks)
            c_identity_op = main_block.append_op(
                type='c_identity',
                inputs={'X': [Out_grad]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                    OP_ROLE_KEY: OpRole.Backward,
                })
            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
377 378 379
            set_comm_op_dist_attr_for_program(c_identity_op,
                                              dist_attr.process_mesh,
                                              out_grad_dist_attr, ctx)
380 381 382 383

            new_kwargs = copy.deepcopy(kwargs)
            new_kwargs['Out@GRAD'] = [intermediate_var_0.name]
            matmul_op_desc = copy_op_with_new_input_output(
384
                ctx, main_block, backward_op, **new_kwargs)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        else:
            # col parallel: matmul + allreduce
            assert Y_var_dim_mapping[0] < 0
            parallel_axis = Y_var_dim_mapping[1]
            new_kwargs = copy.deepcopy(kwargs)

            # NOTE (JZ-LIANG) should allow left operand be empty for matmul grad
            has_x_grad = len(kwargs['X@GRAD']) > 0
            if has_x_grad:
                assert len(kwargs['X@GRAD']) == 1
                X_grad = main_block.var(kwargs['X@GRAD'][0])
                intermediate_var_0 = main_block.create_var(
                    name=unique_name.generate_with_ignorable_key(".".join(
                        ["c_identity", 'tmp'])) + "@GRAD",
                    dtype=X_grad.dtype,
                    shape=X_grad.shape,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=X_grad.stop_gradient)

                X_grad_dist_attr = dist_attr.get_output_dist_attr(X_grad.name)
                assert X_grad_dist_attr is not None
                ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                     X_grad_dist_attr)
                new_kwargs['X@GRAD'] = [intermediate_var_0.name]

            matmul_op_desc = copy_op_with_new_input_output(
412
                ctx, main_block, backward_op, **new_kwargs)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

            # NOTE (JZ-LIANG) trick to skip one allreduce if left operand has not grad
            if has_x_grad:
                group_ranks = _get_comm_group(process_mesh_group,
                                              process_mesh_shape, parallel_axis,
                                              rank_id)
                group = new_process_group(group_ranks)
                c_allreduce_sum_op = main_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': [intermediate_var_0.name]},
                    outputs={'Out': kwargs['X@GRAD']},
                    attrs={
                        'ring_id': group.id,
                        'use_calc_stream': True,
                        'use_model_parallel': True,
                        OP_ROLE_KEY: OpRole.Backward
                    })
                set_comm_op_dist_attr_for_program(c_allreduce_sum_op,
                                                  dist_attr.process_mesh,
                                                  X_grad_dist_attr, ctx)
    else:
        # replicate
435 436
        matmul_op_desc = copy_op_with_new_input_output(ctx, main_block,
                                                       backward_op, **kwargs)
437

438 439 440 441 442 443 444
    # data parallel gradient synchronization
    act_grad_names = [X_var.name]

    out_grad_names = []
    if is_parameter_related(Y_var.name, main_block):
        out_grad_names = [kwargs['Y@GRAD'][0]]

445 446 447
    if trans_x:
        trans_x_y_dims_mapping(True, False, X_var_dims_mapping, None)

448 449
    gradient_synchronization(ctx, backward_op, act_grad_names, out_grad_names,
                             rank_id)
450

451 452 453 454 455
    if trans_x:
        trans_x_y_dims_mapping(True, False, X_var_dims_mapping, None)
    if trans_y:
        trans_x_y_dims_mapping(False, True, None, Y_var_dim_mapping)

456

457
def _init_param_sync(Weight_var, dist_op_context, startup_block, ctx, rank_id):
458

459 460
    if Weight_var.name in dist_op_context.already_init_sync_vars:
        return
461
    assert startup_block.has_var(Weight_var.name)
462
    dist_op_context.already_init_sync_vars.add(Weight_var.name)
463
    param = startup_block.var(Weight_var.name)
464 465 466
    param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
    process_mesh = param_dist_attr.process_mesh
    dim_mapping = param_dist_attr.dims_mapping
467 468 469 470 471

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
472
            group_ranks = _get_comm_group(process_mesh.processes,
473 474 475
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

476 477 478 479 480 481 482 483 484
            startup_block.append_op(type='c_broadcast',
                                    inputs={'X': param},
                                    outputs={'Out': param},
                                    attrs={
                                        'ring_id': sync_group.id,
                                        'root': 0,
                                        'use_calc_stream': True,
                                        OP_ROLE_KEY: OpRole.Forward
                                    })
485 486


487
class DistributedMatmul(DistributedOperatorImplContainer):
488

489 490
    def __init__(self, op_type):
        super(DistributedMatmul, self).__init__(op_type)
491 492


493
register_distributed_operator_impl_container(DistributedMatmul("matmul"))
494 495 496 497


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
498

499
    def __init__(self, name):
500
        super(DistributedMatmulImpl0, self).__init__(name)
501
        self._forward_implemented = True
502
        self._backward_implemented = True
503

C
caozhou 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        # col parallel: matmul + allreduce
        assert Y_var_dim_mapping[0] < 0
        parallel_axis = Y_var_dim_mapping[1]

        has_x_grad = len(backward_op.output("X@GRAD")) > 0
        if has_x_grad:
            assert len(backward_op.output("X@GRAD")) == 1

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # calc comm op cost
        if has_x_grad:
            attrs = {"use_calc_stream": True, "use_model_parallel": True}
            var_names = backward_op.output("X@GRAD")
            c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
                "c_allreduce_sum",
                dist_op,
                ctx,
                var_names,
                attrs=attrs,
                parallel_axis=parallel_axis)
            comm_op_cost_list = build_comm_costs_from_descs(
                AllreduceSumOpCost, ctx, processes,
                c_allreduce_sum_desc_mapping, cluster)
            res.append(comm_op_cost_list)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-1]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.input("X")
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res_cost = [comm_op_cost_list, cost_mapping]

        return res_cost

600 601 602
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
603 604
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
605 606 607 608 609 610 611
        x_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(x_name))
        y_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(y_name))
        trans_x = op_desc.attr('transpose_X')
        trans_y = op_desc.attr('transpose_Y')
        trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping)
612 613
        if is_dim_shard(x_dims_mapping[-1]):
            return False
614 615
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
616 617 618 619 620 621
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

622 623 624
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
625 626 627 628 629 630 631 632 633
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

634
    def is_auto_compatible(self, dist_op):
635 636
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
637
            return False
638
        if not _is_auto_compatible_for_matmul(dist_op):
639 640 641
            return False
        return True

642
    def update_dims_mapping(self, dist_op):
643
        changed = False
644
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
645 646 647 648
        if dim_changed:
            changed = True
        return changed

649 650 651 652 653 654
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

655
        dist_op_context = ctx.dist_op_context
656 657 658 659
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
660
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
661 662 663 664
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
665 666
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
667 668
                                              rank_id)

669
        # check validation of inputs / outputs
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])
687 688
        trans_x = src_op.attr("transpose_X")
        trans_y = src_op.attr("transpose_Y")
689 690 691

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
692
            Weight_var.name)[-1]
693 694 695
        if trans_y:
            matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
                Weight_var.name)[-2]
696 697
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
698 699
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
700 701 702 703 704 705

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

721 722 723 724 725 726 727 728
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
729 730 731
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
732 733 734 735 736 737 738 739 740 741 742 743 744

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
745
                OP_ROLE_KEY: src_op.attr('op_role')
746
            })
Z
zhaoyingli 已提交
747 748
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
749 750 751 752 753 754

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
755 756
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
757
            'alpha': 1,
758
            OP_ROLE_KEY: src_op.attr('op_role')
759 760
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
761 762 763 764
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': Out_var},
                                         attrs=attrs)
Z
zhaoyingli 已提交
765 766 767 768 769 770 771
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
772
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
791
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        for input_varname in matmul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        tensor_dist_attr)
        # output
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)
817 818

        # init param sync
819
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
820
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
821 822 823 824 825
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
826

827 828 829

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
830

831
    def __init__(self, name):
832
        super(DistributedMatmulImpl1, self).__init__(name)
833
        self._forward_implemented = True
834
        self._backward_implemented = True
835

C
caozhou 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        assert Y_var_dim_mapping[1] < 0
        parallel_axis = Y_var_dim_mapping[0]

        # calc comm op cost
        var_names = [backward_op.input("Out@GRAD")[0]]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-2]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

929 930 931
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
932 933
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
934 935 936 937 938 939 940
        x_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(x_name))
        y_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(y_name))
        trans_x = op_desc.attr('transpose_X')
        trans_y = op_desc.attr('transpose_Y')
        trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping)
941 942
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
943 944
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
945 946 947 948 949 950 951
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

952 953 954
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
955 956 957 958 959 960 961 962 963 964
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

965
    def is_auto_compatible(self, dist_op):
966 967
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
968
            return False
969
        if not _is_auto_compatible_for_matmul(dist_op):
970 971 972
            return False
        return True

973
    def update_dims_mapping(self, dist_op):
974
        changed = False
975
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
976 977 978 979
        if dim_changed:
            changed = True
        return changed

980 981 982 983 984 985
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

986
        dist_op_context = ctx.dist_op_context
987 988 989 990
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
991
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
992 993 994 995
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
996 997
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
998 999
                                              rank_id)

1000
        # check validation of inputs / outputs
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])
1018 1019
        trans_x = src_op.attr('transpose_X')
        trans_y = src_op.attr('transpose_Y')
1020 1021 1022

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
1023
            Weight_var.name)[-2]
1024 1025 1026
        if trans_y:
            matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
                Weight_var.name)[-1]
1027 1028
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1029 1030
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
1042 1043
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
1044
            'alpha': 1,
1045
            OP_ROLE_KEY: src_op.attr('op_role')
1046 1047
        }
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1057
        intermediate_var_0 = main_block.create_var(
1058 1059
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1060 1061 1062 1063 1064 1065 1066
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1067 1068 1069
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1070

1071 1072 1073 1074
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': intermediate_var_0},
                                         attrs=attrs)
Z
zhaoyingli 已提交
1075 1076
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1077 1078 1079 1080 1081 1082 1083 1084

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
1085 1086
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
1087
            })
Z
zhaoyingli 已提交
1088 1089 1090 1091 1092 1093 1094
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1095
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                    input_dist_attr)
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1114
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1130 1131

        # init param sync
1132
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1133
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1134 1135 1136 1137 1138
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1139

1140

1141
# ReplicateParallel
1142
class DistributedMatmulImpl2(DistributedOperatorImpl):
1143

1144
    def __init__(self, name):
1145
        super(DistributedMatmulImpl2, self).__init__(name)
1146

C
caozhou 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        res_cost = [cost_mapping]
        return res_cost

1200 1201 1202
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1203 1204 1205 1206 1207 1208 1209
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1210 1211
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1212 1213 1214 1215
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
1216 1217
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
1218 1219 1220 1221
            return False

        return True

1222 1223 1224
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1225 1226 1227 1228 1229
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
1230 1231
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
1232 1233 1234 1235
            return False

        return True

1236
    def is_auto_compatible(self, dist_op):
1237 1238
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1239 1240
            return False

1241
        if not _is_auto_compatible_for_matmul(dist_op):
1242 1243 1244 1245
            return False

        return True

1246
    def update_dims_mapping(self, dist_op):
1247
        changed = False
1248
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1249 1250 1251 1252
        if dim_changed:
            changed = True
        return changed

1253 1254 1255 1256
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

1257 1258 1259 1260
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1261 1262 1263 1264 1265 1266 1267 1268 1269

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


1270
class DistributedMatmulV2(DistributedOperatorImplContainer):
1271

1272 1273
    def __init__(self, op_type):
        super(DistributedMatmulV2, self).__init__(op_type)
1274 1275


1276
register_distributed_operator_impl_container(DistributedMatmulV2("matmul_v2"))
1277 1278


1279 1280
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
1281

1282
    def __init__(self, name):
1283
        super(DistributedMatmulV2Impl0, self).__init__(name)
1284
        self._forward_implemented = True
1285
        self._backward_implemented = True
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        # col parallel: matmul + allreduce
1308 1309
        if backward_op.attr("trans_y"):
            Y_var_dim_mapping.reverse()
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        assert Y_var_dim_mapping[0] < 0
        parallel_axis = Y_var_dim_mapping[1]

        has_x_grad = len(backward_op.output("X@GRAD")) > 0
        if has_x_grad:
            assert len(backward_op.output("X@GRAD")) == 1

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)

        cost_mapping = build_comp_costs_from_descs(MatmulV2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # calc comm op cost
        if has_x_grad:
            attrs = {"use_calc_stream": True, "use_model_parallel": True}
            var_names = backward_op.output("X@GRAD")
            c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
                "c_allreduce_sum",
                dist_op,
                ctx,
                var_names,
                attrs=attrs,
                parallel_axis=parallel_axis)
            comm_op_cost_list = build_comm_costs_from_descs(
                AllreduceSumOpCost, ctx, processes,
                c_allreduce_sum_desc_mapping, cluster)
            res.append(comm_op_cost_list)

        # need gradient allreduce
        process_mesh = dist_attr.process_mesh
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        # TODO: trans shape if trans_x or trans_y is True
        comp_desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                         dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        comp_cost_mapping = build_comp_costs_from_descs(MatmulV2OpCost, ctx,
                                                        processes,
                                                        comp_desc_mapping,
                                                        cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-1]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.input("X")
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)

        res_cost = [comm_op_cost_list, comp_cost_mapping]
        return res_cost

1391 1392 1393
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1394 1395
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
1396 1397 1398 1399 1400 1401 1402
        x_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(x_name))
        y_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(y_name))
        trans_x = op_desc.attr('trans_x')
        trans_y = op_desc.attr('trans_y')
        trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping)
1403 1404
        if is_dim_shard(x_dims_mapping[-1]):
            return False
1405 1406
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
1407 1408 1409 1410 1411 1412
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1413 1414 1415
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1416 1417 1418 1419 1420 1421 1422 1423 1424
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1425
    def is_auto_compatible(self, dist_op):
1426 1427
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1428
            return False
1429
        if not _is_auto_compatible_for_matmul(dist_op):
1430 1431 1432
            return False
        return True

1433
    def update_dims_mapping(self, dist_op):
1434
        changed = False
1435
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1436 1437 1438 1439
        if dim_changed:
            changed = True
        return changed

1440 1441 1442 1443 1444 1445
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1446
        dist_op_context = ctx.dist_op_context
1447 1448 1449 1450
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1451
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1452 1453 1454 1455
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1456 1457
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1458 1459
                                              rank_id)

1460
        # check validation of inputs / outputs
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1476
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1477
        Out_var = main_block.var(kwargs['Out'][0])
1478 1479
        trans_x = src_op.attr('trans_x')
        trans_y = src_op.attr('trans_y')
1480 1481 1482

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
1483
            Weight_var.name)[-1]
1484 1485 1486
        if trans_y:
            matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
                Weight_var.name)[-2]
1487 1488
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
1489 1490
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1491 1492 1493 1494 1495 1496

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

1512 1513 1514 1515 1516 1517 1518 1519
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
1520 1521 1522
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
1535
                OP_ROLE_KEY: src_op.attr('op_role'),
1536
            })
Z
zhaoyingli 已提交
1537 1538
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
1539 1540 1541 1542 1543

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
1544
        attrs = {
1545 1546
            'trans_x': trans_x,
            'trans_y': trans_y,
1547 1548
            OP_ROLE_KEY: src_op.attr('op_role')
        }
1549
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
1550 1551 1552 1553
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': Out_var},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1554 1555 1556 1557 1558 1559 1560
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1561
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1579
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1580 1581 1582 1583 1584 1585 1586
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
1587 1588
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
Z
zhaoyingli 已提交
1589 1590 1591 1592
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
1593 1594
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
Z
zhaoyingli 已提交
1595 1596 1597 1598 1599 1600 1601
        for output_varname in matmul_v2_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)
1602 1603

        # init param sync
1604
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1605
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1606 1607 1608 1609 1610
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1611 1612 1613 1614


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
1615

1616
    def __init__(self, name):
1617
        super(DistributedMatmulV2Impl1, self).__init__(name)
1618
        self._forward_implemented = True
1619
        self._backward_implemented = True
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        assert Y_var_dim_mapping[1] < 0
        parallel_axis = Y_var_dim_mapping[0]

        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        # calc comm op cost
        var_names = [backward_op.input("Out@GRAD")[0]]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(MatmulV2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        process_mesh = dist_attr.process_mesh
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulV2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-2]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)
        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

1715 1716 1717
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1718 1719
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
1720 1721 1722 1723 1724 1725 1726
        x_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(x_name))
        y_dims_mapping = copy.deepcopy(
            op_dist_attr.get_input_dims_mapping(y_name))
        trans_x = op_desc.attr('trans_x')
        trans_y = op_desc.attr('trans_y')
        trans_x_y_dims_mapping(trans_x, trans_y, x_dims_mapping, y_dims_mapping)
1727 1728
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
1729 1730
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
1731 1732 1733 1734 1735 1736 1737
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1738 1739 1740
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1751
    def is_auto_compatible(self, dist_op):
1752 1753
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1754
            return False
1755
        if not _is_auto_compatible_for_matmul(dist_op):
1756 1757 1758
            return False
        return True

1759
    def update_dims_mapping(self, dist_op):
1760
        changed = False
1761
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1762 1763 1764 1765
        if dim_changed:
            changed = True
        return changed

1766 1767 1768 1769 1770 1771
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1772
        dist_op_context = ctx.dist_op_context
1773 1774 1775 1776
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1777
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1778 1779 1780 1781
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1782 1783
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1784 1785
                                              rank_id)

1786
        # check validation of inputs / outputs
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1802
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1803
        Out_var = main_block.var(kwargs['Out'][0])
1804 1805
        trans_x = src_op.attr('trans_x')
        trans_y = src_op.attr('trans_y')
1806 1807 1808

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
1809
            Weight_var.name)[-2]
1810 1811 1812
        if trans_y:
            matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
                Weight_var.name)[-1]
1813 1814
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1815 1816
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
1827
        attrs = {
1828 1829
            'trans_x': trans_x,
            'trans_y': trans_y,
1830 1831
            OP_ROLE_KEY: src_op.attr('op_role')
        }
1832
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1842
        intermediate_var_0 = main_block.create_var(
1843 1844
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1845 1846 1847 1848 1849 1850 1851
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1852 1853 1854
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1855

1856 1857 1858 1859
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': intermediate_var_0},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1860 1861
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1862 1863 1864 1865 1866 1867 1868 1869

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
1870 1871
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
1872
            })
Z
zhaoyingli 已提交
1873 1874 1875 1876 1877 1878 1879
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1880
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = matmul_v2_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1899
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1915 1916

        # init param sync
1917
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1918
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1919 1920 1921 1922 1923
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1924 1925


1926
# ReplicateParallel
1927
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
1928

1929
    def __init__(self, name):
1930
        super(DistributedMatmulV2Impl2, self).__init__(name)
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        process_mesh = dist_attr.process_mesh

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulV2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulV2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        res_cost = [cost_mapping]

        return res_cost

1987 1988 1989
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1990 1991 1992 1993 1994 1995 1996
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1997 1998
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1999 2000 2001 2002
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
2003 2004
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
2005 2006 2007
            return False
        return True

2008 2009 2010 2011 2012
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
2013 2014 2015 2016 2017
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
2018 2019
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
2020 2021 2022 2023
            return False

        return True

2024
    def is_auto_compatible(self, dist_op):
2025 2026
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
2027 2028
            return False

2029
        if not _is_auto_compatible_for_matmul(dist_op):
2030 2031 2032 2033
            return False

        return True

2034
    def update_dims_mapping(self, dist_op):
2035
        changed = False
2036
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
2037 2038 2039 2040
        if dim_changed:
            changed = True
        return changed

2041 2042 2043 2044
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

2045 2046 2047 2048
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

2049

2050 2051 2052 2053
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
2054
register_distributed_operator_impl(
2055
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))
2056 2057 2058


class DistributedMul(DistributedOperatorImplContainer):
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068
    def __init__(self, op_type):
        super(DistributedMul, self).__init__(op_type)


register_distributed_operator_impl_container(DistributedMul("mul"))


# ColumnParallel
class DistributedMulImpl0(DistributedOperatorImpl):
2069

2070 2071 2072 2073 2074
    def __init__(self, name):
        super(DistributedMulImpl0, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        # col parallel: matmul + allreduce
        assert Y_var_dim_mapping[0] < 0
        parallel_axis = Y_var_dim_mapping[1]

        has_x_grad = len(backward_op.output("X@GRAD")) > 0
        if has_x_grad:
            assert len(backward_op.output("X@GRAD")) == 1

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # calc comm op cost
        if has_x_grad:
            attrs = {"use_calc_stream": True, "use_model_parallel": True}
            var_names = backward_op.output("X@GRAD")
            c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
                "c_allreduce_sum",
                dist_op,
                ctx,
                var_names,
                attrs=attrs,
                parallel_axis=parallel_axis)
            comm_op_cost_list = build_comm_costs_from_descs(
                AllreduceSumOpCost, ctx, processes,
                c_allreduce_sum_desc_mapping, cluster)
            res.append(comm_op_cost_list)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-1]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.input("X")
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res_cost = [comm_op_cost_list, cost_mapping]

        return res_cost

2171 2172 2173 2174 2175 2176 2177 2178 2179
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
2180 2181
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
2307
                OP_ROLE_KEY: src_op.attr('op_role')
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
            })
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
2319 2320
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims"),
            OP_ROLE_KEY: src_op.attr('op_role')
2321
        }
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
        inputs = {'X': intermediate_var_0, 'Y': Weight_var}

        inputs_ref_shape = {}
        inputs_original_shape = {}
        for var_name in inputs:
            if var_name == "X":
                var = X_var
            else:
                var = inputs[var_name]
            inputs_original_shape[var_name] = var.shape
            input_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(var)
            input_var_dist_attr = op_dist_attr.get_input_dist_attr(var.name)
            input_ref_shape = infer_shape(main_block, var,
                                          input_tensor_dist_attr,
                                          input_var_dist_attr)
            inputs_ref_shape[var_name] = input_ref_shape
            var.desc.set_shape(input_ref_shape)

2340 2341 2342 2343
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': Out_var},
                                      attrs=attrs)
2344 2345 2346
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

2347 2348 2349 2350 2351
        for var_name in inputs:
            var = inputs[var_name]
            original_shape = inputs_original_shape[var_name]
            var.desc.set_shape(original_shape)

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
2382 2383
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
2384 2385 2386 2387
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
2388 2389
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        for output_varname in mul_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# RowParallel
class DistributedMulImpl1(DistributedOperatorImpl):
2410

2411 2412 2413 2414 2415
    def __init__(self, name):
        super(DistributedMulImpl1, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        assert Y_var_dim_mapping[1] < 0
        parallel_axis = Y_var_dim_mapping[0]

        # calc comm op cost
        var_names = [backward_op.input("Out@GRAD")[0]]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(MulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-2]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        # print("dist_matmul.py dist_op: ", dist_op)
        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

2510 2511 2512 2513 2514 2515 2516 2517 2518
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
2519 2520
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-2]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
2617 2618
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims"),
            OP_ROLE_KEY: src_op.attr('op_role')
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
        }
        inputs = {'X': X_var, 'Y': Weight_var}

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
2631 2632
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
        inputs_ref_shape = {}
        inputs_original_shape = {}
        for var_name in inputs:
            var = inputs[var_name]
            inputs_original_shape[var_name] = var.shape
            input_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(var)
            input_var_dist_attr = op_dist_attr.get_input_dist_attr(var.name)
            input_ref_shape = infer_shape(main_block, var,
                                          input_tensor_dist_attr,
                                          input_var_dist_attr)
            inputs_ref_shape[var_name] = input_ref_shape
            var.desc.set_shape(input_ref_shape)

2657 2658 2659 2660
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': intermediate_var_0},
                                      attrs=attrs)
2661

2662 2663 2664
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)

2665 2666 2667 2668 2669
        for var_name in inputs:
            var = inputs[var_name]
            original_shape = inputs_original_shape[var_name]
            var.desc.set_shape(original_shape)

2670 2671 2672 2673 2674 2675 2676
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
2677 2678
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
2679
            })
2680

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = mul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# ReplicateParallel
class DistributedMulImpl2(DistributedOperatorImpl):
2736

2737 2738 2739
    def __init__(self, name):
        super(DistributedMulImpl2, self).__init__(name)

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        res_cost = [cost_mapping]
        return res_cost

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
2803 2804
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
2805 2806 2807
            return False
        if is_dim_shard(y_dims_mapping[-1]):
            return False
2808 2809
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
            return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
2823 2824
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
            return False

        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


register_distributed_operator_impl("mul",
                                   DistributedMulImpl0("column_parallel"))
register_distributed_operator_impl("mul", DistributedMulImpl1("row_parallel"))
register_distributed_operator_impl("mul",
                                   DistributedMulImpl2("replicate_parallel"))