dist_matmul.py 61.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
Z
zhaoyingli 已提交
16
from .common import infer_shape
17
from .common import DistributedOperatorImplContainer
18
from .common import DistributedOperatorImpl
19
from .common import register_distributed_operator_impl_container
20
from .common import register_distributed_operator_impl
J
JZ-LIANG 已提交
21
from .common import set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
22 23 24 25 26 27
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
28
from ..utils import set_dist_op_desc_original_id
29
from ..dist_attribute import OperatorDistributedAttribute
30 31 32 33
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
34
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
35
from ..process_group import new_process_group
36
from ..utils import _get_comm_group, _get_corresponding_rank
37
from .dist_default import DistributedDefaultImpl0
38 39


40
def copy_op_with_new_input_output(ctx, block, src_op, **kwargs):
41 42
    dist_op_desc = block.desc.append_op()
    dist_op_desc.copy_from(src_op.desc)
43
    set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
44 45 46 47 48 49 50 51 52 53 54
    for input_name in src_op.desc.input_names():
        assert input_name in kwargs
        dist_op_desc.set_input(input_name, kwargs[input_name])
    for output_name in src_op.desc.output_names():
        assert input_name in kwargs
        dist_op_desc.set_output(output_name, kwargs[output_name])

    block._sync_with_cpp()
    return dist_op_desc


55
def _update_dims_mapping_for_matmul(dist_op):
56
    changed = False
57 58
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

75
    # Deal with dim > 2 and take care of broadcasting
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
        assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

        for i in range(x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - x_dims_mapping_len)
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - y_dims_mapping_len)
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(out_dims_mapping_len - 2):
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

117
    # The following which uses negative index can be work
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

134
    # Remove unnecessary dim mapping to make sure the length of dims_mapping is same as its tensor
135 136 137 138 139 140 141 142 143 144 145 146
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
def _is_auto_compatible_for_matmul(dist_op):
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    # Deep copy these dims_mappings for keeping them unchanged.
    x_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(x_name))
    y_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(y_name))
    out_dims_mapping = copy.deepcopy(
        op_dist_attr.get_output_dims_mapping(out_name))
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

    # Deal with dim > 2 and take care of broadcasting
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        is_same = ((broadcast_x_dims_mapping == broadcast_y_dims_mapping) and
                   (broadcast_x_dims_mapping == broadcast_out_dims_mapping))
        if not is_same:
            return False

    # The following which uses negative index can be work
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    is_same = (x_dims_mapping[-1] == y_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (x_dims_mapping[-2] == out_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (y_dims_mapping[-1] == out_dims_mapping[-1])
    if not is_same:
        return False

    return True


209 210 211 212
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

213 214 215 216 217
    dist_op_context = ctx.dist_op_context
    main_block = dist_op_context.get_dst_main_program().global_block()
    backward_op = dist_op_context.get_cur_src_op()
    rank_id = dist_op_context.get_rank_id()
    dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
218 219 220 221
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
222 223
    if rank_id not in dist_attr.process_mesh.processes:
        rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh, rank_id)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')
    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
248 249 250 251
    Y_var = main_block.var(kwargs['Y'][0])
    Out_grad = main_block.var(kwargs['Out@GRAD'][0])
    Y_grad = main_block.var(kwargs['Y@GRAD'][0])

J
JZ-LIANG 已提交
252 253 254
    assert not is_parameter_related(
        X_var.name, main_block
    ), "left operand(X) [{}] of dist matmul should not be parameter".format(
255 256
        X_var.name)

257 258 259
    Y_var_dim_mapping = dist_attr.get_input_dims_mapping(Y_var.name)
    process_mesh_shape = dist_attr.process_mesh.topology
    process_mesh_group = dist_attr.process_mesh.processes
260 261 262 263
    # assert len(
    #     Y_var_dim_mapping
    # ) == 2, "dist matmual only support Y operand with 2 dims now but Y({})'s dim is [{}]".format(
    #     Y_var.name, Y_var_dim_mapping)
264 265 266 267 268 269
    Y_var_partitioned = False
    for dim in Y_var_dim_mapping:
        if dim >= 0 and process_mesh_shape[dim] > 0:
            Y_var_partitioned = True
            break

J
JZ-LIANG 已提交
270
    if is_parameter_related(Y_var.name, main_block) and Y_var_partitioned:
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

        if Y_var_dim_mapping[0] >= 0:
            # row parallel: c_identity + matmul
            assert Y_var_dim_mapping[1] < 0
            parallel_axis = Y_var_dim_mapping[0]

            check_variable_and_dtype(
                Out_grad, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

            intermediate_var_0 = main_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])) + "@GRAD",
                dtype=Out_grad.dtype,
                shape=Out_grad.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=Out_grad.stop_gradient)

            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
            assert out_grad_dist_attr is not None
            ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                 out_grad_dist_attr)

            group_ranks = _get_comm_group(
                process_mesh_group, process_mesh_shape, parallel_axis, rank_id)
            group = new_process_group(group_ranks)
            c_identity_op = main_block.append_op(
                type='c_identity',
                inputs={'X': [Out_grad]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                    OP_ROLE_KEY: OpRole.Backward,
                })
            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
            set_comm_op_dist_attr_for_program(
                c_identity_op, dist_attr.process_mesh, out_grad_dist_attr, ctx)

            new_kwargs = copy.deepcopy(kwargs)
            new_kwargs['Out@GRAD'] = [intermediate_var_0.name]
            matmul_op_desc = copy_op_with_new_input_output(
321
                ctx, main_block, backward_op, **new_kwargs)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        else:
            # col parallel: matmul + allreduce
            assert Y_var_dim_mapping[0] < 0
            parallel_axis = Y_var_dim_mapping[1]
            new_kwargs = copy.deepcopy(kwargs)

            # NOTE (JZ-LIANG) should allow left operand be empty for matmul grad
            has_x_grad = len(kwargs['X@GRAD']) > 0
            if has_x_grad:
                assert len(kwargs['X@GRAD']) == 1
                X_grad = main_block.var(kwargs['X@GRAD'][0])
                intermediate_var_0 = main_block.create_var(
                    name=unique_name.generate_with_ignorable_key(".".join(
                        ["c_identity", 'tmp'])) + "@GRAD",
                    dtype=X_grad.dtype,
                    shape=X_grad.shape,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=X_grad.stop_gradient)

                X_grad_dist_attr = dist_attr.get_output_dist_attr(X_grad.name)
                assert X_grad_dist_attr is not None
                ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                     X_grad_dist_attr)
                new_kwargs['X@GRAD'] = [intermediate_var_0.name]

            matmul_op_desc = copy_op_with_new_input_output(
349
                ctx, main_block, backward_op, **new_kwargs)
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

            # NOTE (JZ-LIANG) trick to skip one allreduce if left operand has not grad
            if has_x_grad:
                group_ranks = _get_comm_group(process_mesh_group,
                                              process_mesh_shape, parallel_axis,
                                              rank_id)
                group = new_process_group(group_ranks)
                c_allreduce_sum_op = main_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': [intermediate_var_0.name]},
                    outputs={'Out': kwargs['X@GRAD']},
                    attrs={
                        'ring_id': group.id,
                        'use_calc_stream': True,
                        'use_model_parallel': True,
                        OP_ROLE_KEY: OpRole.Backward
                    })
                set_comm_op_dist_attr_for_program(c_allreduce_sum_op,
                                                  dist_attr.process_mesh,
                                                  X_grad_dist_attr, ctx)
    else:
        # replicate
372 373
        matmul_op_desc = copy_op_with_new_input_output(ctx, main_block,
                                                       backward_op, **kwargs)
374 375 376 377 378 379

    main_block._sync_with_cpp()

    # check if need gradient allreduce
    need_gradient_allreduce = False

380
    process_mesh = dist_attr.process_mesh
381 382 383 384 385
    var_dim_mapping = dist_attr.get_input_dims_mapping(X_var.name)
    mesh_shape = process_mesh.topology
    batch_size_axis = var_dim_mapping[0]
    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
        need_gradient_allreduce = True
386
        group_ranks = _get_comm_group(process_mesh.processes,
387 388 389 390 391
                                      process_mesh.topology, batch_size_axis,
                                      rank_id)
        dp_degree = len(group_ranks)
        dp_group = new_process_group(group_ranks)

J
JZ-LIANG 已提交
392
    if need_gradient_allreduce and is_parameter_related(Y_var.name, main_block):
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        Y_Grad_var = main_block.var(kwargs['Y@GRAD'][0])
        allreduce_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [Y_Grad_var]},
            outputs={'Out': [Y_Grad_var]},
            attrs={
                'ring_id': dp_group.id,
                'use_calc_stream': True,
                OP_ROLE_KEY: OpRole.Backward
            })
        scale_op = main_block.append_op(
            type='scale',
            inputs={'X': Y_Grad_var},
            outputs={'Out': Y_Grad_var},
            attrs={'scale': 1.0 / dp_degree,
                   OP_ROLE_KEY: OpRole.Backward})
        main_block._sync_with_cpp()

411 412 413
        dims_mapping = ctx.get_tensor_dist_attr_for_program(
            Y_Grad_var).dims_mapping
        process_mesh = dist_attr.process_mesh
414
        for op in [allreduce_op, scale_op]:
415 416
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = process_mesh
417 418
            op_attr.set_output_dims_mapping(Y_Grad_var.name, dims_mapping)
            op_attr.set_input_dims_mapping(Y_Grad_var.name, dims_mapping)
419
            ctx.set_op_dist_attr_for_program(op, op_attr)
420 421


422
def _init_param_sync(Weight_var, dist_op_context, startup_block, ctx, rank_id):
423

424
    assert Weight_var.name not in dist_op_context.already_init_sync_vars
425
    assert startup_block.has_var(Weight_var.name)
426
    dist_op_context.already_init_sync_vars.add(Weight_var.name)
427
    param = startup_block.var(Weight_var.name)
428 429 430
    param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
    process_mesh = param_dist_attr.process_mesh
    dim_mapping = param_dist_attr.dims_mapping
431 432 433 434 435

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
436
            group_ranks = _get_comm_group(process_mesh.processes,
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

            startup_block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': sync_group.id,
                    'root': 0,
                    'use_calc_stream': True,
                    OP_ROLE_KEY: OpRole.Forward
                })
    startup_block._sync_with_cpp()


453
class DistributedMatmul(DistributedOperatorImplContainer):
454 455
    def __init__(self, op_type):
        super(DistributedMatmul, self).__init__(op_type)
456 457


458
register_distributed_operator_impl_container(DistributedMatmul("matmul"))
459 460 461 462 463


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
    def __init__(self, name):
464
        super(DistributedMatmulImpl0, self).__init__(name)
465
        self._forward_implemented = True
466
        self._backward_implemented = True
467

468 469 470
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
471 472 473 474 475 476
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
477 478
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(y_dims_mapping[
                -1]):
479 480 481 482 483 484
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

485 486 487
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
488 489 490 491 492 493 494 495 496
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

497
    def is_auto_compatible(self, dist_op):
498 499
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
500
            return False
501
        if not _is_auto_compatible_for_matmul(dist_op):
502 503 504
            return False
        return True

505
    def update_dims_mapping(self, dist_op):
506
        changed = False
507
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
508 509 510 511
        if dim_changed:
            changed = True
        return changed

512 513 514 515 516 517
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

518 519 520 521 522 523
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
524 525 526 527
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
528 529
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
530 531
                                              rank_id)

532
        # check validation of inputs / outputs
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
556 557
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
558 559 560 561 562 563

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

579 580 581 582 583 584 585 586
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
587 588 589
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
590 591 592 593 594 595 596 597 598 599 600 601 602 603

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
604 605
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
606 607 608 609 610 611 612 613 614 615 616 617 618

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_op = main_block.append_op(
            type='matmul', inputs=inputs, outputs={'Out': Out_var}, attrs=attrs)
Z
zhaoyingli 已提交
619 620 621 622 623 624 625
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
626
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
645
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        for input_varname in matmul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        tensor_dist_attr)
        # output
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)
671 672

        # init param sync
673
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
674
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
675 676 677 678 679
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
680

681 682 683 684

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
    def __init__(self, name):
685
        super(DistributedMatmulImpl1, self).__init__(name)
686
        self._forward_implemented = True
687
        self._backward_implemented = True
688

689 690 691
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

707 708 709
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
710 711 712 713 714 715 716 717 718 719
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

720
    def is_auto_compatible(self, dist_op):
721 722
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
723
            return False
724

725
        if not _is_auto_compatible_for_matmul(dist_op):
726 727 728 729
            return False

        return True

730
    def update_dims_mapping(self, dist_op):
731
        changed = False
732
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
733 734 735 736
        if dim_changed:
            changed = True
        return changed

737 738 739 740 741 742
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

743 744 745 746 747 748
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
749 750 751 752
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
753 754
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
755 756
                                              rank_id)

757
        # check validation of inputs / outputs
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
781 782
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
799 800 801 802 803 804 805 806 807

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

808 809 810 811 812 813 814 815
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
816 817 818
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
819 820 821 822 823 824

        matmul_op = main_block.append_op(
            type='matmul',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)
Z
zhaoyingli 已提交
825 826
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
827 828 829 830 831 832 833 834 835 836

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
837 838 839 840 841 842 843
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
844
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                    input_dist_attr)
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
863
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
879 880

        # init param sync
881
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
882
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
883 884 885 886 887
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
888

889

890
# ReplicateParallel
891 892
class DistributedMatmulImpl2(DistributedOperatorImpl):
    def __init__(self, name):
893
        super(DistributedMatmulImpl2, self).__init__(name)
894

895 896 897
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

917 918 919
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
920 921 922 923 924 925 926 927 928 929 930
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

931
    def is_auto_compatible(self, dist_op):
932 933
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
934 935
            return False

936
        if not _is_auto_compatible_for_matmul(dist_op):
937 938 939 940
            return False

        return True

941
    def update_dims_mapping(self, dist_op):
942
        changed = False
943
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
944 945 946 947
        if dim_changed:
            changed = True
        return changed

948 949 950 951
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

952 953 954 955
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

956 957 958 959 960 961 962 963 964

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


965
class DistributedMatmulV2(DistributedOperatorImplContainer):
966 967
    def __init__(self, op_type):
        super(DistributedMatmulV2, self).__init__(op_type)
968 969


970
register_distributed_operator_impl_container(DistributedMatmulV2("matmul_v2"))
971 972


973 974 975
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
    def __init__(self, name):
976
        super(DistributedMatmulV2Impl0, self).__init__(name)
977
        self._forward_implemented = True
978
        self._backward_implemented = True
979

980 981 982
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
983 984 985 986 987 988
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
989 990
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(y_dims_mapping[
                -1]):
991 992 993 994 995 996
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

997 998 999
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1000 1001 1002 1003 1004 1005 1006 1007 1008
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1009
    def is_auto_compatible(self, dist_op):
1010 1011
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1012 1013
            return False

1014
        if not _is_auto_compatible_for_matmul(dist_op):
1015 1016 1017 1018
            return False

        return True

1019
    def update_dims_mapping(self, dist_op):
1020
        changed = False
1021
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1022 1023 1024 1025
        if dim_changed:
            changed = True
        return changed

1026 1027 1028 1029 1030 1031
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1032 1033 1034 1035 1036 1037
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1038 1039 1040 1041
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1042 1043
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1044 1045
                                              rank_id)

1046
        # check validation of inputs / outputs
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
1070 1071
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1072 1073 1074 1075 1076 1077

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

1093 1094 1095 1096 1097 1098 1099 1100
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
1101 1102 1103
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
1117 1118
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': Out_var},
            attrs=attrs)
Z
zhaoyingli 已提交
1131 1132 1133 1134 1135 1136 1137
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1138
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1156
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                          input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                          tensor_dist_attr)
        for output_varname in matmul_v2_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)
1179 1180

        # init param sync
1181
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1182
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1183 1184 1185 1186 1187
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1188 1189 1190 1191 1192


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
    def __init__(self, name):
1193
        super(DistributedMatmulV2Impl1, self).__init__(name)
1194
        self._forward_implemented = True
1195
        self._backward_implemented = True
1196

1197 1198 1199
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1215 1216 1217
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1228
    def is_auto_compatible(self, dist_op):
1229 1230
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1231 1232
            return False

1233
        if not _is_auto_compatible_for_matmul(dist_op):
1234 1235 1236 1237
            return False

        return True

1238
    def update_dims_mapping(self, dist_op):
1239
        changed = False
1240
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1241 1242 1243 1244
        if dim_changed:
            changed = True
        return changed

1245 1246 1247 1248 1249 1250
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1251 1252 1253 1254 1255 1256
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1257 1258 1259 1260
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1261 1262
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1263 1264
                                              rank_id)

1265
        # check validation of inputs / outputs
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1289 1290
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1312 1313 1314 1315 1316 1317 1318 1319
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1320 1321 1322
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1323 1324 1325 1326 1327 1328

        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)
Z
zhaoyingli 已提交
1329 1330
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
1341 1342 1343 1344 1345 1346 1347
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1348
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = matmul_v2_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1367
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1383 1384

        # init param sync
1385
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1386
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1387 1388 1389 1390 1391
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1392 1393


1394
# ReplicateParallel
1395
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
1396
    def __init__(self, name):
1397
        super(DistributedMatmulV2Impl2, self).__init__(name)
1398

1399 1400 1401
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

1421 1422 1423 1424 1425
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

1437
    def is_auto_compatible(self, dist_op):
1438 1439
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1440 1441
            return False

1442
        if not _is_auto_compatible_for_matmul(dist_op):
1443 1444 1445 1446
            return False

        return True

1447
    def update_dims_mapping(self, dist_op):
1448
        changed = False
1449
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1450 1451 1452 1453
        if dim_changed:
            changed = True
        return changed

1454 1455 1456 1457
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

1458 1459 1460 1461
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1462

1463 1464 1465 1466
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
1467
register_distributed_operator_impl(
1468
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))