logic.py 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
Z
zhulei 已提交
19
from ..framework import VarBase as Tensor
J
Jiabin Yang 已提交
20
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21
# TODO: define logic functions of a tensor  
22 23 24 25 26
from ..fluid.layers import is_empty  # noqa: F401
from ..fluid.layers import logical_and  # noqa: F401
from ..fluid.layers import logical_not  # noqa: F401
from ..fluid.layers import logical_or  # noqa: F401
from ..fluid.layers import logical_xor  # noqa: F401
Z
zhiboniu 已提交
27
import paddle
W
wanghuancoder 已提交
28
from paddle import _C_ops
29
from paddle.tensor.creation import full
30

31 32
__all__ = []

33

W
wawltor 已提交
34
def equal_all(x, y, name=None):
35 36 37
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
38
    **NOTICE**: The output of this OP has no gradient.
39 40

    Args:
41 42
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
43 44
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
45 46

    Returns:
W
wawltor 已提交
47
        Tensor: output Tensor, data type is bool, value is [False] or [True].
48 49 50 51 52

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
53

54 55 56
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
57
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
58
          print(result1) # result1 = [True ]
W
wawltor 已提交
59
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
60
          print(result2) # result2 = [False ]
61
    """
Z
zhiboniu 已提交
62
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
63
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
64 65

    helper = LayerHelper("equal_all", **locals())
66 67
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
68 69
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
70
    return out
Z
Zhen Wang 已提交
71 72 73


@templatedoc()
74
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
75 76 77 78
    """
    ${comment}

    Args:
79 80
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
81 82
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
83 84 85
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
86 87

    Returns:
88 89 90 91 92 93 94 95
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
96 97 98 99 100 101

    Examples:
        .. code-block:: python

          import paddle

102 103
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
104
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
105
                                  equal_nan=False, name="ignore_nan")
106 107 108
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
109
                                      equal_nan=True, name="equal_nan")
110 111 112
          np_result2 = result2.numpy()
          # [False]

113 114
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
115 116 117 118 119 120 121 122
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
123 124
    """

Z
zhiboniu 已提交
125
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
126 127 128
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
129 130 131

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
132 133 134 135 136 137 138
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

139
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
140
    outputs = {'Out': out}
141
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
142 143 144 145
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
146 147


W
wawltor 已提交
148 149
@templatedoc()
def equal(x, y, name=None):
150
    """
S
swtkiwi 已提交
151

152
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
153

W
wawltor 已提交
154
    **NOTICE**: The output of this OP has no gradient.
155 156

    Args:
157 158
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
159 160 161 162
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
163
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
164 165 166 167 168
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
169 170
          import paddle

171 172
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
173
          result1 = paddle.equal(x, y)
N
Noel 已提交
174
          print(result1)  # result1 = [True False False]
175
    """
176 177 178 179 180 181 182
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    if in_dygraph_mode():
        return _C_ops.final_state_equal(x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
205

W
wawltor 已提交
206 207 208 209 210

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
211

W
wawltor 已提交
212 213 214
    **NOTICE**: The output of this OP has no gradient.

    Args:
215 216
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
217 218 219 220 221 222 223
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
224

W
wawltor 已提交
225 226
            import paddle

227 228
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
229
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
230
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
231
    """
J
Jiabin Yang 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    if in_dygraph_mode():
        return _C_ops.final_state_greater_equal(x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
254 255 256 257 258 259


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
260

W
wawltor 已提交
261 262 263
    **NOTICE**: The output of this OP has no gradient.

    Args:
264 265
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
266 267 268 269 270 271 272
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
273

W
wawltor 已提交
274 275
            import paddle

276 277
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
278
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
279
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
280
    """
J
Jiabin Yang 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    if in_dygraph_mode():
        return _C_ops.final_state_greater_than(x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
303 304 305 306 307 308


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
309

W
wawltor 已提交
310 311 312
    **NOTICE**: The output of this OP has no gradient.

    Args:
313 314
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
315 316 317 318 319 320 321 322
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
323

W
wawltor 已提交
324 325
            import paddle

326 327
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
328
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
329
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
330
    """
J
Jiabin Yang 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    if in_dygraph_mode():
        return _C_ops.final_state_less_equal(x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
353 354 355 356 357 358


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
359

W
wawltor 已提交
360 361 362
    **NOTICE**: The output of this OP has no gradient.

    Args:
363 364
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
365 366 367 368 369 370 371 372
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
373

W
wawltor 已提交
374 375
            import paddle

376 377
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
378
            result1 = paddle.less_than(x, y)
N
Noel 已提交
379
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
380
    """
J
Jiabin Yang 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    if in_dygraph_mode():
        return _C_ops.final_state_less_than(x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
403 404 405 406 407 408


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
409
    
W
wawltor 已提交
410 411 412
    **NOTICE**: The output of this OP has no gradient.

    Args:
413 414
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
415 416 417 418 419 420 421 422
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
423

W
wawltor 已提交
424 425
            import paddle

426 427
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
428
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
429
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
430
    """
J
Jiabin Yang 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    if in_dygraph_mode():
        return _C_ops.final_state_not_equal(x, y)
    else:
        if _in_legacy_dygraph():
            return _C_ops.not_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='not_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
Z
zhulei 已提交
453 454 455 456 457


def is_tensor(x):
    """

C
chentianyu03 已提交
458
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
459 460 461 462 463

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
464
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
H
hong 已提交
480
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
481 482 483


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
484
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
485
        op = getattr(_C_ops, op_name)
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

Z
zhiboniu 已提交
672
    if paddle.in_dynamic_mode():
A
andyjpaddle 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out