test_matmul_op.py 13.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle.fluid.core as core
M
Markus Kliegl 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19
import paddle
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
M
Markus Kliegl 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
68 69 70
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
71 72 73 74
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
75 76 77 78
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
79 80 81 82 83 84 85 86 87 88 89
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
90

M
Markus Kliegl 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
104
        self.check_output()
M
Markus Kliegl 已提交
105 106

    def test_check_grad_normal(self):
107
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
108 109

    def test_check_grad_ignore_x(self):
110 111 112 113
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=1e-3,
                        no_grad_set=set("X"))
M
Markus Kliegl 已提交
114 115

    def test_check_grad_ignore_y(self):
116 117 118 119
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=1e-3,
                        no_grad_set=set('Y'))
M
Markus Kliegl 已提交
120 121


122
class TestMatmulOpError(unittest.TestCase):
123

124 125 126 127 128 129
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The inputs type of matmul_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.matmul, input1, input1)
            # The inputs dtype of matmul_op must be float32, float64.
130 131 132
            input2 = fluid.layers.data(name='input2',
                                       shape=[10, 10],
                                       dtype="int32")
133
            self.assertRaises(TypeError, fluid.layers.matmul, input2, input2)
134 135 136
            input3 = fluid.layers.data(name='input3',
                                       shape=[2, 2],
                                       dtype="float16")
137 138 139
            fluid.layers.matmul(input3, input3)


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
# Negative dimension generation
def generate_negative_dims(in_shape):
    from itertools import combinations
    size = len(in_shape)
    indexs = list()
    shapes = list()
    for i in range(size):
        indexs.extend(list(combinations([j for j in range(size)], i + 1)))
    for idx in indexs:
        shapes.append(
            [in_shape[i] if i not in idx else -1 for i in range(size)])
    return shapes


# Build program with inputs sizes that contain negative numbers
def test_negative_dims_program(obj):
    for shape_x in generate_negative_dims(obj.shape_X):
        for shape_y in generate_negative_dims(obj.shape_Y):
            X = np.random.random(obj.shape_X).astype("float32")
            Y = np.random.random(obj.shape_Y).astype("float32")
            Ref = reference_matmul(X, Y, obj.transpose_X, obj.transpose_Y)
            with program_guard(Program(), Program()):
                x = fluid.data(name='x', shape=shape_x, dtype='float32')
                y = fluid.data(name='y', shape=shape_y, dtype='float32')
                output = fluid.layers.matmul(x, y, obj.transpose_X,
                                             obj.transpose_Y)
                obj.assertEqual(len(Ref.shape), len(output.shape))
                for idx in range(len(Ref.shape)):
                    if output.shape[idx] != -1:
                        obj.assertEqual(Ref.shape[idx], output.shape[idx])
                exe = fluid.Executor(fluid.CPUPlace())
                res, = exe.run(fluid.default_main_program(),
172 173 174 175
                               feed={
                                   'x': X,
                                   'y': Y
                               },
176 177 178 179 180 181 182 183 184 185
                               fetch_list=[output])
                np.allclose(res, Ref, atol=1e-5)


# Generate program api cases for all negative possibilities
def api_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulAPI_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
186 187 188 189 190 191 192 193
    globals()[test_name] = type(
        test_name, (unittest.TestCase, ), {
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
            'test_propram': test_negative_dims_program,
        })
194 195 196


# Generate operators cases for all possibilities
Y
Yu Yang 已提交
197 198 199 200 201
def inject_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
202 203 204 205 206 207 208
    globals()[test_name] = type(
        test_name, (Generator, OpTest), {
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
        })
Y
Yu Yang 已提交
209 210 211 212 213 214 215


for dim_X in (1, 2, 3):
    for dim_Y in (1, 2, 3):
        for transose_x in (False, True):
            for transose_y in (False, True):
                inject_test(dim_X, dim_Y, transose_x, transose_y)
216
                api_test(dim_X, dim_Y, transose_x, transose_y)
C
chengduoZH 已提交
217 218


219
# Test case more batch_size and N, M, K
220 221
def generate_compatible_shapes_batch(dim_X, dim_Y, transpose_X, transpose_Y,
                                     batch_size):
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


C
chengduoZH 已提交
255
# Test case n-dim
256
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
257 258 259 260 261 262 263
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
264
        shape_X += [K, M]
C
chengduoZH 已提交
265
    else:
C
chengduoZH 已提交
266
        shape_X += [M, K]
C
chengduoZH 已提交
267 268

    if transpose_Y:
C
chengduoZH 已提交
269
        shape_Y += [N, K]
C
chengduoZH 已提交
270
    else:
C
chengduoZH 已提交
271
        shape_Y += [K, N]
C
chengduoZH 已提交
272 273 274 275

    return shape_X, shape_Y


Y
Yu Yang 已提交
276
# # Test case n-dim
C
chengduoZH 已提交
277 278 279 280 281 282
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                    dim, dim, transpose_X, transpose_Y))
283 284 285 286 287 288 289 290 291
            shape_X, shape_Y = generate_compatible_shapes_ndim(
                dim, transpose_X, transpose_Y)
            globals()[test_name] = type(
                test_name, (Generator, OpTest), {
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
                })
C
chengduoZH 已提交
292

293 294

class API_TestMm(unittest.TestCase):
295

296 297
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
298 299 300
            x = fluid.data(name="x", shape=[2], dtype="float64")
            y = fluid.data(name='y', shape=[2], dtype='float64')
            res = fluid.data(name="output", shape=[1], dtype="float64")
301 302
            result = paddle.mm(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
303 304
            data1 = np.random.rand(2)
            data2 = np.random.rand(2)
305
            np_res = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[result])
306 307
            expected_result = np.matmul(data1.reshape(1, 2),
                                        data2.reshape(2, 1))
308

309 310 311 312 313 314 315
        np.testing.assert_allclose(
            np_res,
            expected_result,
            rtol=1e-05,
            atol=1e-05,
            err_msg='two value is            {}\n{}, check diff!'.format(
                np_res, expected_result))
316

317 318 319 320 321 322 323 324 325
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
326
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
327 328 329


class Test_API_Matmul(unittest.TestCase):
330

331 332 333 334 335 336 337 338 339
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
340
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
341

342 343

class API_TestMmError(unittest.TestCase):
344

345
    def test_errors(self):
346

347 348 349 350 351 352 353 354 355 356
        def test_error1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(name="data1", shape=[10, 2], dtype="float32")
                data2 = fluid.data(name="data2", shape=[3, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
357 358 359 360 361 362
                data1 = fluid.data(name="data1",
                                   shape=[-1, 10, 2],
                                   dtype="float32")
                data2 = fluid.data(name="data2",
                                   shape=[-1, 2, 10],
                                   dtype="float32")
363 364 365 366 367 368
                paddle.mm(data1, data2)

        test_error2()

        def test_error3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
369 370 371 372 373 374
                data1 = fluid.data(name="data1",
                                   shape=[10, 10, 2],
                                   dtype="float32")
                data2 = fluid.data(name="data2",
                                   shape=[3, 2, 10],
                                   dtype="float32")
375 376 377 378 379
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error3)


M
Markus Kliegl 已提交
380 381
if __name__ == "__main__":
    unittest.main()