conv_fusion_op.cu 19.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
19 20
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/operators/math/padding.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
Q
qingqing01 已提交
22

23
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
24 25 26 27

namespace paddle {
namespace operators {

R
ronnywang 已提交
28
#if PADDLE_WITH_HIP || CUDNN_VERSION >= 7100
Q
qingqing01 已提交
29 30 31 32 33 34
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
35
using framework::AlgorithmsCache;
36
using framework::ConvSearchCache;
37

Q
qingqing01 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
51
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
65 66 67 68

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

69 70
    Tensor transformed_input_channel(input->dtype());
    Tensor transformed_output(output->dtype());
71 72
    transformed_input_channel = *input;
    transformed_output = *output;
73 74
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
75
    const T* residual_data = residual ? residual->data<T>() : output_data;
76

77 78 79
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
80
    framework::DDim in_data_dims = pten::slice_ddim(in_dims, 2, in_dims.size());
81 82

    framework::DDim filter_data_dims =
83 84
        pten::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = pten::vectorize<int>(filter_data_dims);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
109
      framework::DDim new_input_shape(pten::make_ddim(new_input_shape_vec));
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
131 132 133 134
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
              "But recieved the actual dimension = %d, shape = [%s].",
              rank, transformed_input_channel.dims()));
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
151 152 153 154 155 156 157 158 159 160 161 162

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
R
ronnywang 已提交
163 164 165
#ifdef PADDLE_WITH_HIP
    miopenConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(padding_common, strides, dilations);
166
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
167 168 169 170 171 172
        platform::dynload::miopenSetConvolutionGroupCount(cudnn_conv_desc,
                                                          groups));
    // Now only support NCHW
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
173
        layout, pten::vectorize<int>(transformed_input.dims()));
R
ronnywang 已提交
174
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
175 176 177
        layout, pten::vectorize<int>(transformed_output.dims()));
    miopenTensorDescriptor_t cudnn_filter_desc =
        filter_desc.descriptor<T>(layout, pten::vectorize<int>(filter->dims()));
R
ronnywang 已提交
178 179 180 181
    miopenTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    miopenActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);
Q
qingqing01 已提交
182

R
ronnywang 已提交
183 184 185 186
    miopenConvFwdAlgorithm_t algo;
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

187 188
    auto x_dims = pten::vectorize(transformed_input.dims());
    auto f_dims = pten::vectorize(filter->dims());
R
ronnywang 已提交
189 190

    size_t workspace_size = 0;
191
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
192 193 194 195 196 197
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
            handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
            cudnn_output_desc, &workspace_size));
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
198
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, input_data, cudnn_filter_desc,
              filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
              kNUM_CUDNN_FWD_ALGS, &find_count, &find_result,
              cudnn_workspace_ptr, workspace_size, false));
    };
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
    VLOG(3) << "cuDNN forward algo " << algo;

    {
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
      auto cudnn_func = [&](void* cudnn_workspace) {
212
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenConvolutionForward(
R
ronnywang 已提交
213 214 215 216 217
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, &beta, cudnn_output_desc,
            output_data, cudnn_workspace, workspace_size));
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size);
218
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
219 220 221 222
          platform::dynload::miopenConvolutionForwardBias(
              handle, &alpha, cudnn_bias_desc, bias_data, &beta,
              cudnn_output_desc, output_data));
      if (activation != "identity") {
223
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenActivationForward(
R
ronnywang 已提交
224 225 226 227
            handle, cudnn_act_desc, &alpha, cudnn_output_desc, output_data,
            &beta, cudnn_output_desc, output_data));
      }
      if (residual) {
228
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenOpTensor(
R
ronnywang 已提交
229 230 231 232 233 234
            handle, miopenTensorOpAdd, &alpha, cudnn_output_desc, output_data,
            &alpha, cudnn_output_desc, residual_data, &beta, cudnn_output_desc,
            output_data));
      }
    }
#else  // PADDLE_WITH_HIP
Q
qingqing01 已提交
235
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
236
        conv_desc.descriptor<T>(padding_common, strides, dilations);
237 238
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
Q
qingqing01 已提交
239 240

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
241
        layout, pten::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
242
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
243 244 245
        layout, pten::vectorize<int>(transformed_output.dims()));
    cudnnFilterDescriptor_t cudnn_filter_desc =
        filter_desc.descriptor<T>(layout, pten::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
246
    // Now only support NCHW
247 248
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
249 250 251 252 253 254 255
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
256
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
257 258
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
259
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
260 261 262 263 264 265 266
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
267
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
268

269
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
270
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
271
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
272
    if (!platform::allow_tf32_cudnn) {
273 274
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_FMA_MATH));
A
AshburnLee 已提交
275
    }
A
AshburnLee 已提交
276
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
277

278 279
    auto x_dims = pten::vectorize(transformed_input.dims());
    auto f_dims = pten::vectorize(filter->dims());
280
    if (!exhaustive_search) {
281
#if CUDNN_VERSION >= 8000
282 283 284 285 286
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
287
      PADDLE_ENFORCE_GPU_SUCCESS(
288
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
289
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
290 291 292
              cudnn_output_desc, kNUM_CUDNN_FWD_ALGS, &perf_count,
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
293
      PADDLE_ENFORCE_GPU_SUCCESS(
294 295 296 297 298
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, algo, &workspace_size_in_bytes));
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
299
#else
300
      PADDLE_ENFORCE_GPU_SUCCESS(
301 302 303 304 305 306
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
#endif
Q
qingqing01 已提交
307
    } else {
308 309
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
310 311 312
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
313
        auto cudnn_find_func = [&](void* cudnn_workspace) {
314
          PADDLE_ENFORCE_GPU_SUCCESS(
C
chengduo 已提交
315 316 317 318
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                  handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                  filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
                  kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
319
                  fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
C
chengduo 已提交
320
        };
321
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
322 323 324 325 326 327 328 329
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
330
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
331
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
332 333 334
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
335
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
336 337 338 339
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
340 341
        algo = algo_cache.GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
                                       search_func);
Q
qingqing01 已提交
342
      } else {
343
        auto dtype = platform::CudnnDataType<T>::type;
344
        algo = algo_cache.GetAlgorithm(x_dims, f_dims, strides, paddings,
345
                                       dilations, 0, dtype, search_func);
Q
qingqing01 已提交
346 347 348 349
      }
      VLOG(3) << "choose algo " << algo;
    }

350
    PADDLE_ENFORCE_GPU_SUCCESS(
351 352
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
353
            cudnn_output_desc, algo, &workspace_size_in_bytes));
354 355 356 357 358 359 360
    PADDLE_ENFORCE_LE(
        workspace_size_in_bytes, workspace_size_limit,
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
            "to be less than the limit. But recieved: the actual workspace "
            "size = %d, limit = %d.",
            workspace_size_in_bytes, workspace_size_limit));
Q
qingqing01 已提交
361

N
nhzlx 已提交
362
    if ((activation == "identity") && (!residual)) {
363 364 365 366 367 368
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
369
      auto cudnn_func = [&](void* cudnn_workspace) {
370
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnConvolutionForward(
371 372 373
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, cudnn_workspace,
            workspace_size_in_bytes, &beta, cudnn_output_desc, output_data));
C
chengduo 已提交
374 375
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
376
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnAddTensor(
377 378
          handle, &alpha, cudnn_bias_desc, bias_data, &alpha, cudnn_output_desc,
          output_data));
379 380 381 382 383 384 385
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
386
      auto cudnn_func = [&](void* cudnn_workspace) {
387
        PADDLE_ENFORCE_GPU_SUCCESS(
388 389 390 391 392
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha1, cudnn_input_desc, input_data,
                cudnn_filter_desc, filter_data, cudnn_conv_desc, algo,
                cudnn_workspace, workspace_size_in_bytes, &alpha2,
                cudnn_output_desc, residual_data, cudnn_bias_desc, bias_data,
393
                cudnn_act_desc, cudnn_output_desc, output_data));
C
chengduo 已提交
394 395
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
396
    }
R
ronnywang 已提交
397
#endif
Q
qingqing01 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
416 417 418
        PADDLE_THROW(platform::errors::Unimplemented(
            "Input with batch size greater than 1 is unsupported. The recieved "
            "batch size is %d, Input's shape is [%s].",
419
            x_dims[0], pten::make_ddim(x_dims)));
Q
qingqing01 已提交
420 421
      }
    }
Q
qingqing01 已提交
422 423
  }
};
D
Dang Qingqing 已提交
424
#endif
Q
qingqing01 已提交
425 426 427 428 429

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
ronnywang 已提交
430
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
431 432
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
                        ops::CUDNNConvFusionOpKernel<double>);
D
Dang Qingqing 已提交
433
#endif
R
ronnywang 已提交
434 435 436
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>);
#endif