elementwise_op.cc 13.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45 46 47

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
S
Shang Zhizhou 已提交
48 49 50
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound("Variable %s not found in scope.",
                                        op_desc.Input("Y").front().c_str()));
N
nhzlx 已提交
51
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
52
    float* weight_data = nullptr;
53
    auto output_name = op_desc.Output("Out")[0];
54 55
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);
56 57 58 59 60 61 62 63 64 65
    nvinfer1::Dims dims_x = X->getDimensions();

    auto regist_eltwise_weight = [&](nvinfer1::ScaleMode scale_mode) {
      TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                           static_cast<void*>(weight_data),
                                           static_cast<size_t>(Y_t->numel())};
      TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

      nvinfer1::IShuffleLayer* expand_layer = nullptr;
      nvinfer1::IShuffleLayer* squeeze_layer = nullptr;
      int dynamic_shape_offset = engine_->with_dynamic_shape() ? 1 : 0;
      auto input_dim = X->getDimensions();
      if (input_dim.nbDims < 3 + dynamic_shape_offset) {
        nvinfer1::Dims expand_shape;
        expand_shape.nbDims = 3 + dynamic_shape_offset;
        for (int i = 0; i < expand_shape.nbDims; i++) {
          if (i < input_dim.nbDims) {
            expand_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
          } else {
            expand_shape.d[i] = 1;
          }
        }
        expand_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
        expand_layer->setReshapeDimensions(expand_shape);
        X = expand_layer->getOutput(0);
84 85 86 87
        expand_layer->getOutput(0)->setName(
            ("elementwise_reshape_out: " + output_name).c_str());
        expand_layer->setName(
            ("Elewise: Shuffle: (Output: " + output_name + ")").c_str());
88
      }
89 90
      if (op_type_ == "add") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
91 92
            engine_, ScaleNd, *X, scale_mode, shift_weights.get(),
            scale_weights.get(), power_weights.get(), dynamic_shape_offset);
93 94 95 96 97 98 99
        layer = scale_layer;
      } else if (op_type_ == "mul") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, scale_weights.get(),
            shift_weights.get(), power_weights.get());
        layer = scale_layer;
      }
100 101 102 103 104 105 106 107 108
      if (input_dim.nbDims < 3 + dynamic_shape_offset) {
        nvinfer1::Dims squeeze_shape;
        squeeze_shape.nbDims = input_dim.nbDims;
        for (int i = 0; i < squeeze_shape.nbDims; i++) {
          squeeze_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
        }
        squeeze_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(layer->getOutput(0)));
        squeeze_layer->setReshapeDimensions(squeeze_shape);
109 110 111 112 113
        RreplenishLayerAndOutput(squeeze_layer, "elementwise_" + op_type_,
                                 {output_name}, test_mode);
      } else {
        RreplenishLayerAndOutput(layer, "elementwise_" + op_type_,
                                 {output_name}, test_mode);
114
      }
115 116 117
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
118
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        engine_->SetTensorDynamicRange(X, x_scale);
#endif
      }
    };

    if (engine_->with_dynamic_shape()) {
      if (Y_t->dims().size() == 1) {
        auto scale_mode = nvinfer1::ScaleMode::kCHANNEL;
        PADDLE_ENFORCE_EQ(Y_t->dims()[0], dims_x.d[1],
                          platform::errors::InvalidArgument(
                              "The Bias's size(%d) should be equal to the "
                              "first dim(%d) of the Input.",
                              Y_t->dims()[0], dims_x.d[1]));
        regist_eltwise_weight(scale_mode);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
135 136 137
            "The size of input bias's dims is %d, but TensorRT dynamic shape "
            "only support size = 1 for Elementwise op!",
            Y_t->dims().size()));
138 139 140 141 142 143 144 145 146
      }
      return;
    }

    std::vector<int> no_batch_dims;
    int start_index = 0;

    for (; start_index < dims_x.nbDims; start_index++)
      no_batch_dims.push_back(dims_x.d[start_index]);
N
nhzlx 已提交
147

N
nhzlx 已提交
148 149
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

150
    std::vector<int> dims_y = pten::vectorize<int>(Y_t->dims());
151
    if (dims_y.size() == no_batch_dims.size() + 1) {
N
nhzlx 已提交
152 153 154
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

155
    if (dims_y.size() == 1 && dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
156
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
157 158
    } else if (dims_y.size() == no_batch_dims.size() &&
               dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
159
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
160 161
      for (size_t i = 1; i < no_batch_dims.size(); i++) {
        if (dims_y[i] != no_batch_dims[i]) {
N
nhzlx 已提交
162 163 164 165 166
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
167
        for (size_t i = 1; i < no_batch_dims.size(); i++) {
N
nhzlx 已提交
168
          if (dims_y[i] != 1)
169 170 171 172
            PADDLE_THROW(platform::errors::InvalidArgument(
                "The bias's %d dim is %d, but TensorRT dynamic shape only "
                "support it equals to 1 for Elementwise op!",
                i, dims_y[i]));
N
nhzlx 已提交
173 174 175
        }
      }
    } else {
176 177 178 179 180 181 182 183 184 185 186
      if (dims_y.size() >= 1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d and bias's size is %d. TensorRT "
            "doesn't support this shape for Elementwise op!",
            dims_y.size(), dims_y[0]));
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d. TensorRT doesn't support "
            "this shape for Elementwise op!",
            dims_y.size()));
      }
N
nhzlx 已提交
187
    }
188
    regist_eltwise_weight(scale_mode);
N
nhzlx 已提交
189
  }
190 191 192

 protected:
  std::string op_type_;
N
nhzlx 已提交
193 194 195 196 197 198 199
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
200
    auto op_pair = ops.find(op_type_);
201 202 203 204 205
    PADDLE_ENFORCE_NE(op_pair, ops.end(),
                      platform::errors::InvalidArgument(
                          "Elementwise op's type(%s) is not supported. Please "
                          "check if the op_type is correct.",
                          op_type_));
206

N
nhzlx 已提交
207 208 209
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
210
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
211 212 213

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
214 215 216
    std::vector<nvinfer1::ITensor*> itensors;
    itensors.push_back(X);
    itensors.push_back(Y);
N
nhzlx 已提交
217 218 219
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

220
    int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
221
    auto output_name = op_desc.Output("Out")[0];
222 223 224 225 226 227 228

    auto common_func = [&](nvinfer1::ILayer* layer) {
      RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
        CHECK(op_desc.HasAttr("Y_scale"));
229 230
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
        float y_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Y_scale"));
231 232 233 234 235 236
        engine_->SetTensorDynamicRange(X, x_scale);
        engine_->SetTensorDynamicRange(Y, y_scale);
#endif
      }
    };

237
    if (dims_x.nbDims == dims_y.nbDims) {
238 239
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
240 241
      nvinfer1::IElementWiseLayer* elet_layer =
          TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *X, *Y, op_pair->second);
N
nhzlx 已提交
242

243
      layer = elet_layer;
244 245 246
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";
247 248 249 250
      if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        plugin::ElementwisePluginDynamic* plugin =
            new plugin::ElementwisePluginDynamic(op_type_, axis);
251
        layer = engine_->AddDynamicPlugin(itensors.data(), 2, plugin);
252 253 254 255
#else
        PADDLE_THROW(platform::errors::Fatal(
            "You are running the TRT Dynamic Shape mode, need to confirm that "
            "your TRT version is no less than 6.0"));
256
#endif
257 258 259
      } else {
        plugin::ElementWisePlugin* plugin =
            new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
260 261 262 263

        std::vector<nvinfer1::ITensor*> inputs{X, Y};
        auto* plugin_layer = engine_->AddPlugin(
            inputs.data(), inputs.size(),
264 265 266 267
            reinterpret_cast<plugin::PluginTensorRT*>(plugin));

        layer = plugin_layer;
      }
N
nhzlx 已提交
268
    }
269
    common_func(layer);
N
nhzlx 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

289 290 291 292 293 294 295 296 297 298
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

338 339 340 341
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);