elementwise_op.cc 12.3 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45 46 47 48 49 50 51 52 53

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
54 55 56
    float* weight_data = nullptr;
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    nvinfer1::Dims dims_x = X->getDimensions();

    auto regist_eltwise_weight = [&](nvinfer1::ScaleMode scale_mode) {
      TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                           static_cast<void*>(weight_data),
                                           static_cast<size_t>(Y_t->numel())};
      TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      if (op_type_ == "add") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, shift_weights.get(),
            scale_weights.get(), power_weights.get());
        layer = scale_layer;
      } else if (op_type_ == "mul") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, scale_weights.get(),
            shift_weights.get(), power_weights.get());
        layer = scale_layer;
      }

      auto output_name = op_desc.Output("Out")[0];
      RreplenishLayerAndOutput(layer, "elementwise_" + op_type_, {output_name},
                               test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
85
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        engine_->SetTensorDynamicRange(X, x_scale);
#endif
      }
    };

    if (engine_->with_dynamic_shape()) {
      if (Y_t->dims().size() == 1) {
        auto scale_mode = nvinfer1::ScaleMode::kCHANNEL;
        PADDLE_ENFORCE_EQ(Y_t->dims()[0], dims_x.d[1],
                          platform::errors::InvalidArgument(
                              "The Bias's size(%d) should be equal to the "
                              "first dim(%d) of the Input.",
                              Y_t->dims()[0], dims_x.d[1]));
        regist_eltwise_weight(scale_mode);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
102 103 104
            "The size of input bias's dims is %d, but TensorRT dynamic shape "
            "only support size = 1 for Elementwise op!",
            Y_t->dims().size()));
105 106 107 108 109 110 111 112 113
      }
      return;
    }

    std::vector<int> no_batch_dims;
    int start_index = 0;

    for (; start_index < dims_x.nbDims; start_index++)
      no_batch_dims.push_back(dims_x.d[start_index]);
N
nhzlx 已提交
114

N
nhzlx 已提交
115 116
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

117
    std::vector<int> dims_y = framework::vectorize<int>(Y_t->dims());
118
    if (dims_y.size() == no_batch_dims.size() + 1) {
N
nhzlx 已提交
119 120 121
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

122
    if (dims_y.size() == 1 && dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
123
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
124 125
    } else if (dims_y.size() == no_batch_dims.size() &&
               dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
126
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
127 128
      for (size_t i = 1; i < no_batch_dims.size(); i++) {
        if (dims_y[i] != no_batch_dims[i]) {
N
nhzlx 已提交
129 130 131 132 133
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
134
        for (size_t i = 1; i < no_batch_dims.size(); i++) {
N
nhzlx 已提交
135
          if (dims_y[i] != 1)
136 137 138 139
            PADDLE_THROW(platform::errors::InvalidArgument(
                "The bias's %d dim is %d, but TensorRT dynamic shape only "
                "support it equals to 1 for Elementwise op!",
                i, dims_y[i]));
N
nhzlx 已提交
140 141 142
        }
      }
    } else {
143 144 145 146 147 148 149 150 151 152 153
      if (dims_y.size() >= 1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d and bias's size is %d. TensorRT "
            "doesn't support this shape for Elementwise op!",
            dims_y.size(), dims_y[0]));
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d. TensorRT doesn't support "
            "this shape for Elementwise op!",
            dims_y.size()));
      }
N
nhzlx 已提交
154
    }
155
    regist_eltwise_weight(scale_mode);
N
nhzlx 已提交
156
  }
157 158 159

 protected:
  std::string op_type_;
N
nhzlx 已提交
160 161 162 163 164 165 166
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
167
    auto op_pair = ops.find(op_type_);
168 169 170 171 172
    PADDLE_ENFORCE_NE(op_pair, ops.end(),
                      platform::errors::InvalidArgument(
                          "Elementwise op's type(%s) is not supported. Please "
                          "check if the op_type is correct.",
                          op_type_));
173

N
nhzlx 已提交
174 175 176
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
177
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
178 179 180 181 182 183 184

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
185 186 187
    std::vector<nvinfer1::ITensor*> itensors;
    itensors.push_back(X);
    itensors.push_back(Y);
N
nhzlx 已提交
188 189 190
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

191
    int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
192
    auto output_name = op_desc.Output("Out")[0];
193 194 195 196 197 198 199

    auto common_func = [&](nvinfer1::ILayer* layer) {
      RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
        CHECK(op_desc.HasAttr("Y_scale"));
200 201
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
        float y_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Y_scale"));
202 203 204 205 206 207
        engine_->SetTensorDynamicRange(X, x_scale);
        engine_->SetTensorDynamicRange(Y, y_scale);
#endif
      }
    };

208 209 210
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
211 212
      nvinfer1::IElementWiseLayer* elet_layer =
          TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *X, *Y, op_pair->second);
N
nhzlx 已提交
213

214
      layer = elet_layer;
215 216 217
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";
218 219 220 221 222 223 224 225 226
      if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        plugin::ElementwisePluginDynamic* plugin =
            new plugin::ElementwisePluginDynamic(op_type_, axis);
        layer = engine_->AddPluginV2(itensors.data(), 2, plugin);
#else
        PADDLE_THROW(platform::errors::Fatal(
            "You are running the TRT Dynamic Shape mode, need to confirm that "
            "your TRT version is no less than 6.0"));
227
#endif
228 229 230 231 232 233 234 235 236 237 238
      } else {
        plugin::ElementWisePlugin* plugin =
            new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
        plugin->AddInput(X);
        plugin->AddInput(Y);
        nvinfer1::IPluginLayer* plugin_layer = engine_->AddPlugin(
            plugin->GetInputs().data(), 2,
            reinterpret_cast<plugin::PluginTensorRT*>(plugin));

        layer = plugin_layer;
      }
N
nhzlx 已提交
239
    }
240
    common_func(layer);
N
nhzlx 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

260 261 262 263 264 265 266 267 268 269
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

309 310 311 312
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);