interpolate_grad_kernel.cc 42.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/interpolate_grad_kernel.h"
16

17
#include "paddle/phi/backends/cpu/cpu_context.h"
18
#include "paddle/phi/common/amp_type_traits.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/interpolate_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T>
static void LinearInterpolationGrad(const DenseTensor& output_grad,
                                    DenseTensor* input_grad,
                                    const float ratio_w,
                                    const int in_w,
                                    const int n,
                                    const int c,
                                    const int out_w,
                                    const bool align_corners,
                                    const int align_mode,
                                    const DataLayout data_layout) {
  auto input_grad_t = EigenTensor<T, 3>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 3>::From(output_grad);
  bool align_flag = (align_mode == 0 && !align_corners);
40
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  for (int l = 0; l < out_w; l++) {
    int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                         : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;                       // w
    int x_e = (x_w < (in_w - 1)) ? (x_w + 1) : x_w;  // w_id

    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;  // w1lambda
    float d_e = 1.f - d_w;                                         // w2lambda

    for (int i = 0; i < n; i++) {    // loop for batches
      for (int j = 0; j < c; j++) {  // loop for channels
        // linear interpolation grad
        if (data_layout == DataLayout::kNCHW) {
56
          const MT grad = static_cast<MT>(output_grad_t(i, j, l));
57 58 59
          input_grad_t(i, j, x_w) += static_cast<T>(grad * d_e);
          input_grad_t(i, j, x_e) += static_cast<T>(grad * d_w);
        } else {
60
          const MT grad = static_cast<MT>(output_grad_t(i, l, j));
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
          input_grad_t(i, x_w, j) += static_cast<T>(grad * d_e);
          input_grad_t(i, x_e, j) += static_cast<T>(grad * d_w);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolationGrad(const DenseTensor& output_grad,
                                      DenseTensor* input_grad,
                                      const float ratio_h,
                                      const float ratio_w,
                                      const int in_h,
                                      const int in_w,
                                      const int n,
                                      const int c,
                                      const int out_h,
                                      const int out_w,
                                      const bool align_corners,
                                      const int align_mode,
                                      const DataLayout data_layout) {
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
  bool align_flag = (align_mode == 0 && !align_corners);
86 87 88

  using MT = typename phi::dtype::MPTypeTrait<T>::Type;

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  for (int k = 0; k < out_h; k++) {  // loop for images
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
    y_n = (y_n > 0) ? y_n : 0;
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
      int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                           : static_cast<int>(ratio_w * l);
      x_w = (x_w > 0) ? x_w : 0;
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
      float idx_src_x = ratio_w * (l + 0.5) - 0.5;
      idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
      float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
          if (data_layout == DataLayout::kNCHW) {
113 114
            // const T grad = output_grad_t(i, j, k, l);
            const MT grad = static_cast<MT>(output_grad_t(i, j, k, l));
115 116 117 118 119
            input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
            input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
            input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
            input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
          } else {
120
            const MT grad = static_cast<MT>(output_grad_t(i, k, l, j));
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            input_grad_t(i, y_n, x_w, j) += static_cast<T>(grad * d_s * d_e);
            input_grad_t(i, y_s, x_w, j) += static_cast<T>(grad * d_n * d_e);
            input_grad_t(i, y_n, x_e, j) += static_cast<T>(grad * d_s * d_w);
            input_grad_t(i, y_s, x_e, j) += static_cast<T>(grad * d_n * d_w);
          }
        }
      }
    }
  }
}

template <typename T>
static void NearestNeighborInterpolateGrad(const DenseTensor& output_grad,
                                           DenseTensor* input_grad,
                                           const float ratio_h,
                                           const float ratio_w,
                                           const int n,
                                           const int c,
                                           const int out_h,
                                           const int out_w,
                                           const bool align_corners,
                                           const DataLayout data_layout) {
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);

  for (int k = 0; k < out_h; k++) {  // loop for images
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);

    for (int l = 0; l < out_w; l++) {
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          if (data_layout == DataLayout::kNCHW) {
            input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
          } else {
            input_grad_t(i, in_k, in_l, j) += output_grad_t(i, k, l, j);
          }
        }
      }
    }
  }
}

template <typename T>
static void BicubicInterpolationGrad(const DenseTensor& output_grad,
                                     DenseTensor* input_grad,
                                     const float ratio_h,
                                     const float ratio_w,
                                     const int in_h,
                                     const int in_w,
                                     const int n,
                                     const int c,
                                     const int out_h,
                                     const int out_w,
                                     const bool align_corners,
                                     const DataLayout data_layout) {
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
182
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
183 184

  for (int k = 0; k < out_h; k++) {  // loop for images
185
    MT y_n = align_corners ? ratio_h * k : ratio_h * (k + 0.5) - 0.5;
186
    int input_y = floorf(y_n);
187
    MT y_t = y_n - input_y;
188 189

    for (int l = 0; l < out_w; l++) {
190
      MT x_n = align_corners ? ratio_w * l : ratio_w * (l + 0.5) - 0.5;
191
      int input_x = floorf(x_n);
192
      MT x_t = x_n - input_x;
193

194 195
      MT x_coeffs[4];
      MT y_coeffs[4];
196

197 198
      funcs::get_cubic_upsample_coefficients<MT>(x_coeffs, x_t);
      funcs::get_cubic_upsample_coefficients<MT>(y_coeffs, y_t);
199 200 201 202 203 204 205 206 207 208 209

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bicubic interpolation grad
          for (int ii = 0; ii < 4; ii++) {
            for (int jj = 0; jj < 4; jj++) {
              int access_x = std::max(std::min(input_x - 1 + ii, in_w - 1),
                                      static_cast<int>(0));
              int access_y = std::max(std::min(input_y - 1 + jj, in_h - 1),
                                      static_cast<int>(0));
              if (data_layout == DataLayout::kNCHW) {
210
                MT grad = static_cast<MT>(output_grad_t(i, j, k, l));
211
                input_grad_t(i, j, access_y, access_x) +=
212
                    static_cast<T>(grad * y_coeffs[jj] * x_coeffs[ii]);
213
              } else {
214
                MT grad = static_cast<MT>(output_grad_t(i, k, l, j));
215
                input_grad_t(i, access_y, access_x, j) +=
216
                    static_cast<T>(grad * y_coeffs[jj] * x_coeffs[ii]);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
              }
            }
          }
        }
      }
    }
  }
}

template <typename T>
static void TrilinearInterpolationGrad(const DenseTensor& output_grad,
                                       DenseTensor* input_grad,
                                       const float ratio_d,
                                       const float ratio_h,
                                       const float ratio_w,
                                       const int in_d,
                                       const int in_h,
                                       const int in_w,
                                       const int n,
                                       const int c,
                                       const int out_d,
                                       const int out_h,
                                       const int out_w,
                                       const bool align_corners,
                                       const int align_mode,
                                       const DataLayout data_layout) {
  auto input_grad_t = EigenTensor<T, 5>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 5>::From(output_grad);
  bool align_flag = (align_mode == 0 && !align_corners);
246
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  for (int j = 0; j < out_d; j++) {  // loop for D
    int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
                         : static_cast<int>(ratio_d * j);
    t_f = (t_f > 0) ? t_f : 0;
    int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
    float idx_src_t = ratio_d * (j + 0.5) - 0.5;
    idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
    float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
    float d_b = 1.f - d_f;

    for (int k = 0; k < out_h; k++) {  // loop for H
      int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                           : static_cast<int>(ratio_h * k);
      y_n = (y_n > 0) ? y_n : 0;
      int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
      float idx_src_y = ratio_h * (k + 0.5) - 0.5;
      idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
      float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
      float d_s = 1.f - d_n;

      for (int l = 0; l < out_w; l++) {  // loop for W
        int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                             : static_cast<int>(ratio_w * l);
        x_w = (x_w > 0) ? x_w : 0;
        int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
        float idx_src_x = ratio_w * (l + 0.5) - 0.5;
        idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
        float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
        float d_e = 1.f - d_w;

        for (int b = 0; b < n; b++) {    // loop for batches
          for (int i = 0; i < c; i++) {  // loop for channels
            // trilinear interpolation grad
            if (data_layout == DataLayout::kNCHW) {
281
              const MT grad = static_cast<MT>(output_grad_t(b, i, j, k, l));
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
              input_grad_t(b, i, t_f, y_n, x_w) +=
                  static_cast<T>(grad * d_b * d_s * d_e);
              input_grad_t(b, i, t_f, y_n, x_e) +=
                  static_cast<T>(grad * d_b * d_s * d_w);
              input_grad_t(b, i, t_f, y_s, x_w) +=
                  static_cast<T>(grad * d_b * d_n * d_e);
              input_grad_t(b, i, t_f, y_s, x_e) +=
                  static_cast<T>(grad * d_b * d_n * d_w);
              input_grad_t(b, i, t_b, y_n, x_w) +=
                  static_cast<T>(grad * d_f * d_s * d_e);
              input_grad_t(b, i, t_b, y_n, x_e) +=
                  static_cast<T>(grad * d_f * d_s * d_w);
              input_grad_t(b, i, t_b, y_s, x_w) +=
                  static_cast<T>(grad * d_f * d_n * d_e);
              input_grad_t(b, i, t_b, y_s, x_e) +=
                  static_cast<T>(grad * d_f * d_n * d_w);
            } else {
299
              const MT grad = static_cast<MT>(output_grad_t(b, j, k, l, i));
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
              input_grad_t(b, t_f, y_n, x_w, i) +=
                  static_cast<T>(grad * d_b * d_s * d_e);
              input_grad_t(b, t_f, y_n, x_e, i) +=
                  static_cast<T>(grad * d_b * d_s * d_w);
              input_grad_t(b, t_f, y_s, x_w, i) +=
                  static_cast<T>(grad * d_b * d_n * d_e);
              input_grad_t(b, t_f, y_s, x_e, i) +=
                  static_cast<T>(grad * d_b * d_n * d_w);
              input_grad_t(b, t_b, y_n, x_w, i) +=
                  static_cast<T>(grad * d_f * d_s * d_e);
              input_grad_t(b, t_b, y_n, x_e, i) +=
                  static_cast<T>(grad * d_f * d_s * d_w);
              input_grad_t(b, t_b, y_s, x_w, i) +=
                  static_cast<T>(grad * d_f * d_n * d_e);
              input_grad_t(b, t_b, y_s, x_e, i) +=
                  static_cast<T>(grad * d_f * d_n * d_w);
            }
          }
        }
      }
    }
  }
}

template <typename T>
static void NearestNeighbor3DInterpolateGrad(const DenseTensor& output_grad,
                                             DenseTensor* input_grad,
                                             const float ratio_d,
                                             const float ratio_h,
                                             const float ratio_w,
                                             const int n,
                                             const int c,
                                             const int out_d,
                                             const int out_h,
                                             const int out_w,
                                             const bool align_corners,
                                             const DataLayout data_layout) {
  auto input_grad_t = EigenTensor<T, 5>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 5>::From(output_grad);

  for (int d = 0; d < out_d; d++) {
    int in_d = (align_corners) ? static_cast<int>(ratio_d * d + 0.5)
                               : static_cast<int>(ratio_d * d);
    for (int k = 0; k < out_h; k++) {  // loop for images
      int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                                 : static_cast<int>(ratio_h * k);

      for (int l = 0; l < out_w; l++) {
        int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                   : static_cast<int>(ratio_w * l);

        for (int i = 0; i < n; i++) {    // loop for batches
          for (int j = 0; j < c; j++) {  // loop for channels
            if (data_layout == DataLayout::kNCHW) {
              input_grad_t(i, j, in_d, in_k, in_l) +=
                  output_grad_t(i, j, d, k, l);
            } else {
              input_grad_t(i, in_d, in_k, in_l, j) +=
                  output_grad_t(i, d, k, l, j);
            }
          }
        }
      }
    }
  }
}

template <typename T, typename Context>
static void Interpolate1DCPUBwd(
    const Context& dev_ctx,
    const DenseTensor& input,
371 372 373
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
374 375 376 377 378 379 380 381
    const DenseTensor& output_grad,
    const std::string& data_layout_str,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* input_grad) {
382
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  int n, c, in_d, in_h, in_w;
  funcs::ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);

  float scale_w = -1.0;
  if (scale_tensor) {
    auto scale_data =
        funcs::get_new_data_from_tensor<float>(scale_tensor.get_ptr());
    scale_w = scale_data[0];
    PADDLE_ENFORCE_EQ(
        scale_w > 0,
        true,
        errors::InvalidArgument(
            "The scale_w in input 'Scale' Tensor of Operator(interpolate) "
            "should be greater than 0, but received value is %d.",
            scale_w));
  } else {
    if (scale.size() > 0) {
      scale_w = scale[0];
      PADDLE_ENFORCE_EQ(
          scale_w > 0,
          true,
          errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
    }
  }
  if (scale_w > 0.) {
    out_w = static_cast<int>(in_w * scale_w);
  }
  if (out_size) {
    auto out_size_data =
        funcs::get_new_data_from_tensor<int>(out_size.get_ptr());
    out_w = out_size_data[0];
  }
  if (size_tensor && size_tensor->size() > 0) {
    // have size tensor
    auto new_size = funcs::get_new_shape(size_tensor.get());
    out_w = new_size[0];
  }

  phi::DDim dim_grad;
  if (data_layout == DataLayout::kNCHW) {
    dim_grad = {n, c, in_w};
  } else {
    dim_grad = {n, in_w, c};
  }

  input_grad->Resize(dim_grad);
  dev_ctx.template Alloc<T>(input_grad);

  phi::funcs::SetConstant<Context, T> zero;
  zero(dev_ctx, input_grad, static_cast<T>(0.0));

  if (in_w == out_w) {
438
    phi::Copy(dev_ctx, output_grad, dev_ctx.GetPlace(), false, input_grad);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    return;
  }

  float ratio_w = 0.f;
  if (out_w > 1) {
    float new_scale_w = 0.f;
    new_scale_w = (scale_w > 0) ? static_cast<float>(1. / scale_w)
                                : static_cast<float>(in_w) / out_w;
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(new_scale_w);
  }
  if ("linear" == interp_method) {
    LinearInterpolationGrad<T>(output_grad,
                               input_grad,
                               ratio_w,
                               in_w,
                               n,
                               c,
                               out_w,
                               align_corners,
                               align_mode,
                               data_layout);
  }
}

template <typename T, typename Context>
static void Interpolate2DCPUBwd(
    const Context& dev_ctx,
    const DenseTensor& input,
468 469 470
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
471 472 473 474 475 476 477 478 479
    const DenseTensor& output_grad,
    const std::string& data_layout_str,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* input_grad) {
480
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  int n, c, in_d, in_h, in_w;
  funcs::ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);

  float scale_h = -1;
  float scale_w = -1;
  if (scale_tensor) {
    auto scale_data =
        funcs::get_new_data_from_tensor<float>(scale_tensor.get_ptr());
    if (scale_data.size() > 1) {
      scale_h = scale_data[0];
      scale_w = scale_data[1];
    } else {
      scale_w = scale_data[0];
      scale_h = scale_data[0];
    }
    PADDLE_ENFORCE_EQ(
        scale_w > 0,
        true,
        errors::InvalidArgument(
            "The scale_w in input 'Scale' Tensor of Operator(interpolate) "
            "should be greater than 0, but received value is %d.",
            scale_w));
    PADDLE_ENFORCE_EQ(
        scale_h > 0,
        true,
        errors::InvalidArgument(
            "The scale_h in input 'Scale' Tensor of Operator(interpolate) "
            "should be greater than 0, but received value is %d.",
            scale_h));
  } else {
    if (scale.size() > 1) {
      scale_h = scale[0];
      scale_w = scale[1];
      PADDLE_ENFORCE_EQ(
          scale_w > 0,
          true,
          errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
      PADDLE_ENFORCE_EQ(
          scale_h > 0,
          true,
          errors::InvalidArgument(
              "The scale_h in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_h));
    }
  }
  if (scale_h > 0. && scale_w > 0.) {
    out_h = static_cast<int>(in_h * scale_h);
    out_w = static_cast<int>(in_w * scale_w);
  }
  if (out_size) {
    auto out_size_data =
        funcs::get_new_data_from_tensor<int>(out_size.get_ptr());
    out_h = out_size_data[0];
    out_w = out_size_data[1];
  }
  if (size_tensor && size_tensor->size() > 0) {
    // have size tensor
    auto new_size = funcs::get_new_shape(size_tensor.get());
    out_h = new_size[0];
    out_w = new_size[1];
  }

  phi::DDim dim_grad;
  if (data_layout == DataLayout::kNCHW) {
    dim_grad = {n, c, in_h, in_w};
  } else {
    dim_grad = {n, in_h, in_w, c};
  }

  input_grad->Resize(dim_grad);
  dev_ctx.template Alloc<T>(input_grad);

  phi::funcs::SetConstant<Context, T> zero;
  zero(dev_ctx, input_grad, static_cast<T>(0.0));

  if (in_h == out_h && in_w == out_w) {
561
    phi::Copy(dev_ctx, output_grad, dev_ctx.GetPlace(), false, input_grad);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    return;
  }

  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    float new_scale_h = 0.f;
    new_scale_h = (scale_h > 0) ? static_cast<float>(1. / scale_h)
                                : static_cast<float>(in_h) / out_h;
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(new_scale_h);
  }
  if (out_w > 1) {
    float new_scale_w = 0.f;
    new_scale_w = (scale_w > 0) ? static_cast<float>(1. / scale_w)
                                : static_cast<float>(in_w) / out_w;
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(new_scale_w);
  }

  if ("bilinear" == interp_method) {
    BilinearInterpolationGrad<T>(output_grad,
                                 input_grad,
                                 ratio_h,
                                 ratio_w,
                                 in_h,
                                 in_w,
                                 n,
                                 c,
                                 out_h,
                                 out_w,
                                 align_corners,
                                 align_mode,
                                 data_layout);
  } else if ("nearest" == interp_method) {
    NearestNeighborInterpolateGrad<T>(output_grad,
                                      input_grad,
                                      ratio_h,
                                      ratio_w,
                                      n,
                                      c,
                                      out_h,
                                      out_w,
                                      align_corners,
                                      data_layout);
  } else if ("bicubic" == interp_method) {
    BicubicInterpolationGrad<T>(output_grad,
                                input_grad,
                                ratio_h,
                                ratio_w,
                                in_h,
                                in_w,
                                n,
                                c,
                                out_h,
                                out_w,
                                align_corners,
                                data_layout);
  }
}

template <typename T, typename Context>
static void Interpolate3DCPUBwd(
    const Context& dev_ctx,
    const DenseTensor& input,
627 628 629
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
630 631 632 633 634 635 636 637 638 639
    const DenseTensor& output_grad,
    const std::string& data_layout_str,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* input_grad) {
640
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
  int n, c, in_d, in_h, in_w;
  funcs::ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);

  float scale_d = -1;
  float scale_h = -1;
  float scale_w = -1;
  if (scale_tensor) {
    auto scale_data =
        funcs::get_new_data_from_tensor<float>(scale_tensor.get_ptr());
    if (scale_data.size() > 1) {
      scale_d = scale_data[0];
      scale_h = scale_data[1];
      scale_w = scale_data[2];
    } else {
      scale_d = scale_data[0];
      scale_h = scale_data[0];
      scale_w = scale_data[0];
    }
    PADDLE_ENFORCE_EQ(
        scale_w > 0,
        true,
        errors::InvalidArgument(
            "The scale_w in input 'Scale' Tensor of Operator(interpolate) "
            "should be greater than 0, but received value is %d.",
            scale_w));
    PADDLE_ENFORCE_EQ(
        scale_h > 0,
        true,
        errors::InvalidArgument(
            "The scale_h in input 'Scale' Tensor of Operator(interpolate) "
            "should be greater than 0, but received value is %d.",
            scale_h));
    PADDLE_ENFORCE_EQ(
        scale_d > 0,
        true,
        errors::InvalidArgument(
            "The scale_d in input 'Scale' Tensor of Operator(interpolate) "
            "should be greater than 0, but received value is %d.",
            scale_d));
  } else {
    if (scale.size() > 1) {
      scale_d = scale[0];
      scale_h = scale[1];
      scale_w = scale[2];
      PADDLE_ENFORCE_EQ(
          scale_w > 0,
          true,
          errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
      PADDLE_ENFORCE_EQ(
          scale_h > 0,
          true,
          errors::InvalidArgument(
              "The scale_h in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_h));
      PADDLE_ENFORCE_EQ(
          scale_d > 0,
          true,
          errors::InvalidArgument(
              "The scale_d in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_d));
    }
  }
  if (scale_d > 0. && scale_h > 0. && scale_w > 0.) {
    out_d = static_cast<int>(in_d * scale_d);
    out_h = static_cast<int>(in_h * scale_h);
    out_w = static_cast<int>(in_w * scale_w);
  }
  if (out_size) {
    auto out_size_data =
        funcs::get_new_data_from_tensor<int>(out_size.get_ptr());
    out_d = out_size_data[0];
    out_h = out_size_data[1];
    out_w = out_size_data[2];
  }
  if (size_tensor && size_tensor->size() > 0) {
    // have size tensor
    auto new_size = funcs::get_new_shape(size_tensor.get());
    out_d = new_size[0];
    out_h = new_size[1];
    out_w = new_size[2];
  }

  phi::DDim dim_grad;
  if (data_layout == DataLayout::kNCHW) {
    dim_grad = {n, c, in_d, in_h, in_w};
  } else {
    dim_grad = {n, in_d, in_h, in_w, c};
  }
  input_grad->Resize(dim_grad);
  dev_ctx.template Alloc<T>(input_grad);

  phi::funcs::SetConstant<Context, T> zero;
  zero(dev_ctx, input_grad, static_cast<T>(0.0));

  if (in_d == out_d && in_h == out_h && in_w == out_w) {
741
    phi::Copy(dev_ctx, output_grad, dev_ctx.GetPlace(), false, input_grad);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    return;
  }

  float ratio_d = 0.f;
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_d > 1) {
    float new_scale_d = 0.f;
    new_scale_d = (scale_d > 0) ? static_cast<float>(1. / scale_d)
                                : static_cast<float>(in_d) / out_d;
    ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
                              : static_cast<float>(new_scale_d);
  }
  if (out_h > 1) {
    float new_scale_h = 0.f;
    new_scale_h = (scale_h > 0) ? static_cast<float>(1. / scale_h)
                                : static_cast<float>(in_h) / out_h;
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(new_scale_h);
  }
  if (out_w > 1) {
    float new_scale_w = 0.f;
    new_scale_w = (scale_w > 0) ? static_cast<float>(1. / scale_w)
                                : static_cast<float>(in_w) / out_w;
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(new_scale_w);
  }

  if ("trilinear" == interp_method) {
    TrilinearInterpolationGrad<T>(output_grad,
                                  input_grad,
                                  ratio_d,
                                  ratio_h,
                                  ratio_w,
                                  in_d,
                                  in_h,
                                  in_w,
                                  n,
                                  c,
                                  out_d,
                                  out_h,
                                  out_w,
                                  align_corners,
                                  align_mode,
                                  data_layout);
  } else if ("nearest" == interp_method) {
    NearestNeighbor3DInterpolateGrad<T>(output_grad,
                                        input_grad,
                                        ratio_d,
                                        ratio_h,
                                        ratio_w,
                                        n,
                                        c,
                                        out_d,
                                        out_h,
                                        out_w,
                                        align_corners,
                                        data_layout);
  }
}

template <typename T, typename Context>
void InterpolateGradKernel(
    const Context& dev_ctx,
    const DenseTensor& x,
807 808 809
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    const DenseTensor& output_grad,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* x_grad) {
  auto output_grad_dims = output_grad.dims();
  if (output_grad_dims.size() == 3) {  // 1D interpolation grad
    Interpolate1DCPUBwd<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    output_grad,
                                    data_layout,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);
  } else if (output_grad_dims.size() == 4) {  // 2D interpolation grad
    Interpolate2DCPUBwd<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    output_grad,
                                    data_layout,
                                    out_h,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);

  } else if (output_grad_dims.size() == 5) {  // 3D interpolation grad
    Interpolate3DCPUBwd<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    output_grad,
                                    data_layout,
                                    out_d,
                                    out_h,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);
  }
}

template <typename T, typename Context>
void BilinearInterpGradKernel(
    const Context& dev_ctx,
    const DenseTensor& x,
874 875 876
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    const DenseTensor& out_grad,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* x_grad) {
  InterpolateGradKernel<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    out_grad,
                                    data_layout,
                                    out_d,
                                    out_h,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);
}

template <typename T, typename Context>
void NearestInterpGradKernel(
    const Context& dev_ctx,
    const DenseTensor& x,
908 909 910
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
    const DenseTensor& out_grad,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* x_grad) {
  InterpolateGradKernel<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    out_grad,
                                    data_layout,
                                    out_d,
                                    out_h,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);
}

template <typename T, typename Context>
void TrilinearInterpGradKernel(
    const Context& dev_ctx,
    const DenseTensor& x,
942 943 944
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    const DenseTensor& out_grad,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* x_grad) {
  InterpolateGradKernel<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    out_grad,
                                    data_layout,
                                    out_d,
                                    out_h,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);
}

template <typename T, typename Context>
void LinearInterpGradKernel(
    const Context& dev_ctx,
    const DenseTensor& x,
976 977 978
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    const DenseTensor& out_grad,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* x_grad) {
  InterpolateGradKernel<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    out_grad,
                                    data_layout,
                                    out_d,
                                    out_h,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);
}

template <typename T, typename Context>
void BicubicInterpGradKernel(
    const Context& dev_ctx,
    const DenseTensor& x,
1010 1011 1012
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    const DenseTensor& out_grad,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* x_grad) {
  InterpolateGradKernel<T, Context>(dev_ctx,
                                    x,
                                    out_size,
                                    size_tensor,
                                    scale_tensor,
                                    out_grad,
                                    data_layout,
                                    out_d,
                                    out_h,
                                    out_w,
                                    scale,
                                    interp_method,
                                    align_corners,
                                    align_mode,
                                    x_grad);
}

}  // namespace phi

1042
PD_REGISTER_KERNEL(bilinear_interp_grad,
1043 1044 1045 1046
                   CPU,
                   ALL_LAYOUT,
                   phi::BilinearInterpGradKernel,
                   float,
1047 1048 1049
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
1050 1051 1052
  kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
1053
PD_REGISTER_KERNEL(nearest_interp_grad,
1054 1055 1056 1057
                   CPU,
                   ALL_LAYOUT,
                   phi::NearestInterpGradKernel,
                   float,
1058 1059 1060
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
1061 1062 1063
  kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
1064
PD_REGISTER_KERNEL(trilinear_interp_grad,
1065 1066 1067 1068
                   CPU,
                   ALL_LAYOUT,
                   phi::TrilinearInterpGradKernel,
                   float,
1069 1070 1071
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
1072 1073 1074
  kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
1075
PD_REGISTER_KERNEL(linear_interp_grad,
1076 1077 1078 1079
                   CPU,
                   ALL_LAYOUT,
                   phi::LinearInterpGradKernel,
                   float,
1080 1081 1082
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
1083 1084 1085
  kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
1086
PD_REGISTER_KERNEL(bicubic_interp_grad,
1087 1088 1089 1090
                   CPU,
                   ALL_LAYOUT,
                   phi::BicubicInterpGradKernel,
                   float,
1091 1092 1093
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
1094 1095 1096
  kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}