test_static_save_load.py 67.0 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
W
WeiXin 已提交
16
import sys
H
hong 已提交
17 18

import unittest
19
import paddle
H
hong 已提交
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22
from paddle.nn import Embedding
H
hong 已提交
23 24 25 26
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
27
from paddle.fluid.executor import global_scope
H
hong 已提交
28 29
import numpy as np
import six
30
import pickle
H
hong 已提交
31
import os
32
import errno
Y
YuanRisheng 已提交
33
import tempfile
H
hong 已提交
34

35 36
paddle.enable_static()

H
hong 已提交
37 38 39 40 41 42 43 44 45

class SimpleLSTMRNN(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
46
        super(SimpleLSTMRNN, self).__init__()
H
hong 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._input = None
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self._input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
151
        super(PtbModel, self).__init__()
H
hong 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            self.full_name(),
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
165 166 167 168
        self.embedding = paddle.nn.Embedding(
            num_embeddings=vocab_size,
            embedding_dim=hidden_size,
            weight_attr=fluid.ParamAttr(
H
hong 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

192 193
        # NPU 'tok_k' kernel only support `int32` dtype, so cast `input` from `int64` to `int32`.
        input = fluid.layers.cast(input, "int32")
H
hong 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)

        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


220
class TestSaveLoadBase(unittest.TestCase):
221 222 223 224
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
225 226 227 228 229 230 231 232 233
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
Y
YuanRisheng 已提交
234
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
235 236 237 238 239 240 241 242 243 244 245 246

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

247
            place = self.set_place()
H
hong 已提交
248 249 250
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
251
                name="x", shape=[-1, num_steps], dtype='int64')
H
hong 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
295
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
296 297
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
298
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
299 300 301
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

Y
YuanRisheng 已提交
302
            fluid.save(main_program, os.path.join(temp_dir.name, "test_1"))
H
hong 已提交
303 304 305

            # set var to zero
            for var in main_program.list_vars():
306
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
307 308 309 310 311
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
312
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
313 314
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

Y
YuanRisheng 已提交
315 316
            fluid.load(main_program,
                       os.path.join(temp_dir.name, "test_1.pdparams"), exe)
H
hong 已提交
317 318

            for var in main_program.list_vars():
319
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
320 321 322 323
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
Y
YuanRisheng 已提交
324
            temp_dir.cleanup()
H
hong 已提交
325 326


327
class TestSaveLoadPartial(unittest.TestCase):
328 329 330 331
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
332 333 334 335 336 337 338 339 340
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
Y
YuanRisheng 已提交
341
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
342 343 344 345 346 347 348 349 350 351 352 353

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

354
            place = self.set_place()
H
hong 已提交
355 356 357
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
358
                name="x", shape=[-1, num_steps], dtype='int64')
H
hong 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
410
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
411 412
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
413
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
414 415 416
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

Y
YuanRisheng 已提交
417
            fluid.save(main_program, os.path.join(temp_dir.name, "test_1"))
H
hong 已提交
418 419 420

            # set var to zero
            for var in main_program.list_vars():
421
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
422 423 424 425 426
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
427
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
428 429
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

Y
YuanRisheng 已提交
430 431
            fluid.load(test_program,
                       os.path.join(temp_dir.name, "test_1.pdopt"), None)
H
hong 已提交
432 433

            for var in test_program.list_vars():
434
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
435 436 437 438
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
Y
YuanRisheng 已提交
439 440 441
            fluid.load(test_program,
                       os.path.join(temp_dir.name, "test_1.pdmodel"), None)
            temp_dir.cleanup()
H
hong 已提交
442 443


444
class TestSaveLoadSetStateDict(unittest.TestCase):
445 446 447 448
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

449 450 451 452 453 454 455 456 457
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
Y
YuanRisheng 已提交
458
        temp_dir = tempfile.TemporaryDirectory()
459 460 461 462 463 464 465 466 467 468 469 470

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

471
            place = self.set_place()
472 473 474
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
475
                name="x", shape=[-1, num_steps], dtype='int64')
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
522
                    # make sure all the paramerter or optimizer var have been update
523 524 525
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

Y
YuanRisheng 已提交
526
            fluid.save(main_program, os.path.join(temp_dir.name, "test_1"))
527 528 529 530 531 532 533 534 535

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
536
                    # make sure all the paramerter or optimizer var have been set to zero
537 538
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

Y
YuanRisheng 已提交
539
            fluid.load(main_program, os.path.join(temp_dir.name, "test_1"), exe)
540 541 542 543 544 545 546

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
Y
YuanRisheng 已提交
547
            temp_dir.cleanup()
548 549 550


class TestProgramStatePartial(unittest.TestCase):
551 552 553 554
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

555 556 557 558 559 560 561 562 563
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
Y
YuanRisheng 已提交
564
        temp_dir = tempfile.TemporaryDirectory()
565 566 567 568 569 570 571 572 573 574 575 576

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

577
            place = self.set_place()
578 579 580
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
581
                name="x", shape=[-1, num_steps], dtype='int64')
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
636
                    # make sure all the paramerter or optimizer var have been update
637 638 639
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

Y
YuanRisheng 已提交
640
            fluid.save(main_program, os.path.join(temp_dir.name, 'test_1'))
641 642 643 644 645 646 647 648 649

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
650
                    # make sure all the paramerter or optimizer var have been set to zero
651 652 653
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
654
            program_state = fluid.load_program_state(
Y
YuanRisheng 已提交
655
                os.path.join(temp_dir.name, 'test_1'))
H
hong 已提交
656 657

            program_state_1 = fluid.load_program_state(
Y
YuanRisheng 已提交
658
                os.path.join(temp_dir.name, 'test_1.pdparams'))
H
hong 已提交
659 660

            program_state_2 = fluid.load_program_state(
Y
YuanRisheng 已提交
661
                os.path.join(temp_dir.name, 'test_1.pdopt'))
H
hong 已提交
662 663

            program_state_3 = fluid.load_program_state(
Y
YuanRisheng 已提交
664
                os.path.join(temp_dir.name, 'test_1.pdmodel'))
H
hong 已提交
665

666 667 668 669 670 671 672 673 674
            fluid.set_program_state(test_program, program_state)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

H
hong 已提交
675 676 677 678 679 680 681 682
            # check 1
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
683
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_1)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 2
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
703
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_2)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 3
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
723
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
724 725 726 727 728 729 730 731 732 733
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_3)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
Y
YuanRisheng 已提交
734
            temp_dir.cleanup()
H
hong 已提交
735

736 737

class TestVariableInit(unittest.TestCase):
738 739 740 741
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

742 743 744 745 746 747
    def test_variable_init(self):

        x = fluid.data(name="x", shape=[10, 10], dtype='float32')
        y = fluid.layers.fc(x, 10)
        z = fluid.layers.fc(y, 10)

748
        place = self.set_place()
749 750 751
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

Y
YuanRisheng 已提交
752 753 754
        temp_dir = tempfile.TemporaryDirectory()
        fluid.save(fluid.default_main_program(),
                   os.path.join(temp_dir.name, "test_path"))
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

        def set_var(var, ndarray):
            t = var.get_tensor()
            p = t._place()
            if p.is_cpu_place():
                place = paddle.fluid.CPUPlace()
            elif p.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            else:
                p = paddle.fluid.core.Place()
                p.set_place(t._place())
                place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            t.set(ndarray, place)

        program = fluid.default_main_program()
        new_scope = fluid.core.Scope()

773
        place = self.set_place()
774 775 776 777 778 779
        exe = fluid.Executor(place)
        parameter_list = list(
            filter(fluid.io.is_parameter, program.list_vars()))

        fluid.core._create_loaded_parameter(parameter_list, new_scope,
                                            exe._default_executor)
Y
YuanRisheng 已提交
780
        parameter_file_name = os.path.join(temp_dir.name, "test_path.pdparams")
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        with open(parameter_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in parameter_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, parameter_file_name)
            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        opt_list = list(
            filter(fluid.io.is_belong_to_optimizer, program.list_vars()))

        fluid.core._create_loaded_parameter(opt_list, new_scope,
                                            exe._default_executor)
Y
YuanRisheng 已提交
796
        opt_file_name = os.path.join(temp_dir.name, "test_path.pdopt")
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in opt_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)

            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        base_map = {}
        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                t = np.array(fluid.global_scope().find_var(var.name)
                             .get_tensor())
T
tianshuo78520a 已提交
813
                # make sure all the paramerter or optimizer var have been update
814 815 816 817 818 819 820 821
                base_map[var.name] = t

        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                new_t = np.array(new_scope.find_var(var.name).get_tensor())
                base_t = base_map[var.name]

                self.assertTrue(np.array_equal(new_t, base_t))
Y
YuanRisheng 已提交
822
        temp_dir.cleanup()
823 824


H
hong 已提交
825 826 827 828 829
class TestLoadFromOldInterface(unittest.TestCase):
    def setUp(self):
        if os.path.exists("test_path.pdparams"):
            os.remove("test_path.pdparams")

830 831 832
        if os.path.exists("test_static_load_var_list.pdparams"):
            os.remove("test_static_load_var_list.pdparams")

Y
YuanRisheng 已提交
833 834
        self.temp_dir = tempfile.TemporaryDirectory()

835 836 837 838
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

Y
YuanRisheng 已提交
839 840 841
    def tearDown(self):
        self.temp_dir.cleanup()

H
hong 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

863
            place = self.set_place()
H
hong 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
916
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
917 918 919 920
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
Y
YuanRisheng 已提交
921 922 923
            fluid.io.save_persistables(
                exe,
                os.path.join(self.temp_dir.name, "test_path"), main_program)
H
hong 已提交
924 925 926 927 928 929 930 931 932

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
933
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
934 935
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

Y
YuanRisheng 已提交
936 937
            fluid.load(main_program,
                       os.path.join(self.temp_dir.name, "test_path"), exe)
H
hong 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)
            with self.assertRaises(RuntimeError):
Y
YuanRisheng 已提交
954 955
                fluid.load(main_program,
                           os.path.join(self.temp_dir.name, "test_path"), exe)
H
hong 已提交
956

T
tianshuo78520a 已提交
957
            # check unused parameter
H
hong 已提交
958

Y
YuanRisheng 已提交
959 960
            fluid.load(test_clone_program,
                       os.path.join(self.temp_dir.name, "test_path"), exe)
H
hong 已提交
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    def test_load_from_old_interface_var_list(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

983
            place = self.set_place()
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
Y
YuanRisheng 已提交
1041 1042 1043 1044
            fluid.io.save_persistables(
                exe,
                os.path.join(self.temp_dir.name, "test_static_load_var_list"),
                main_program)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

            # set var to zero            
            var_list = []
            for i, var in enumerate(main_program.list_vars()):
                if isinstance(var, framework.Parameter) or var.persistable:
                    if i % 2 == 0:
                        var_list.append(var)
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    # make sure all the paramerter or optimizer var have been set to zero
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

Y
YuanRisheng 已提交
1060 1061 1062 1063
            fluid.load(
                main_program,
                os.path.join(self.temp_dir.name, "test_static_load_var_list"),
                exe, var_list)
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            var_list_names = [var.name for var in var_list]
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    if var.name in var_list_names:
                        # loaded vars
                        base_t = base_map[var.name]
                        self.assertTrue(np.array_equal(new_t, base_t))
                    else:
                        #not loaded vars
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
1077 1078

class TestLoadFromOldInterfaceSingleFile(unittest.TestCase):
1079 1080 1081 1082
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
Y
YuanRisheng 已提交
1092
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

1105
            place = self.set_place()
H
hong 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1156
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1157 1158
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t
Y
YuanRisheng 已提交
1159
            save_dir = os.path.join(temp_dir.name, "test_path")
H
hong 已提交
1160 1161
            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(
Y
YuanRisheng 已提交
1162
                exe, save_dir, main_program, filename="model_single")
H
hong 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1172
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1173 1174
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

Y
YuanRisheng 已提交
1175
            file_model_path = os.path.join(save_dir, "model_single")
H
hong 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
            fluid.load(main_program, file_model_path, exe,
                       fluid.io.get_program_persistable_vars(main_program))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # test exception
            # change shape
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)

            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            fluid.io.save_params(
                exe, "test_path", main_program, filename="model_single")
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when executor is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, None,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when var list is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, exe, None)

            # check save params, load var_list = get_program_persistable_vars
            with self.assertRaises(RuntimeError):
                temp_var = framework.Variable(
                    main_program.global_block(),
                    shape=[1],
                    name="test_temp_var")
                all_var_list = list(main_program.list_vars())
                fluid.load(main_program, file_model_path, exe,
                           all_var_list + [temp_var])
Y
YuanRisheng 已提交
1224
        temp_dir.cleanup()
H
hong 已提交
1225 1226


H
hong 已提交
1227
class TestProgramStateOldSave(unittest.TestCase):
1228 1229
    def setUp(self):
        self.test_dygraph = True
Y
YuanRisheng 已提交
1230 1231 1232 1233
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1234 1235 1236 1237 1238

    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

1260
            place = self.set_place()
H
hong 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1319
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1320 1321
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t
Y
YuanRisheng 已提交
1322 1323
            save_dir = os.path.join(self.temp_dir.name, "test_program_1")
            fluid.io.save_persistables(exe, save_dir, main_program)
H
hong 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1333
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1334 1335
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

1336
            # case 1: load basic
Y
YuanRisheng 已提交
1337
            program_state = fluid.load_program_state(save_dir)
H
hong 已提交
1338
            fluid.set_program_state(main_program, program_state)
1339 1340 1341
            self.check_in_static(main_program, base_map)

            # case 2: load with no need file
1342 1343
            def symlink_force(target, link_name):
                try:
1344
                    self.create_symlink(target, link_name)
1345 1346 1347
                except OSError as e:
                    if e.errno == errno.EEXIST:
                        os.remove(link_name)
1348
                        self.create_symlink(target, link_name)
1349 1350 1351
                    else:
                        raise e

Y
YuanRisheng 已提交
1352
            program_state = fluid.load_program_state(save_dir)
1353 1354
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1355

1356 1357
            # case 3: load with var_list
            program_state = fluid.load_program_state(
Y
YuanRisheng 已提交
1358
                save_dir, main_program.all_parameters())
1359 1360
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1361

1362 1363 1364
        if self.test_dygraph:
            # make sure `load_program_state` can be used in dynamic graph mode
            with fluid.dygraph.guard(place):
Y
YuanRisheng 已提交
1365
                load_state = fluid.load_program_state(save_dir)
1366 1367
                for k, v in load_state.items():
                    self.assertTrue(np.array_equal(base_map[k], v))
1368

1369 1370 1371 1372 1373 1374 1375 1376
    def create_symlink(self, target, link_name):
        try:
            os.symlink(target, link_name)
        except AttributeError:
            import ctypes
            kernel_dll = ctypes.windll.LoadLibrary("kernel32.dll")
            kernel_dll.CreateSymbolicLinkA(target, link_name, 0)

1377 1378 1379 1380 1381 1382 1383 1384
    def check_in_static(self, main_program, base_map):
        for var in main_program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                new_t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
                base_t = base_map[var.name]
                self.assertTrue(np.array_equal(new_t, base_t))

H
hong 已提交
1385 1386

class TestProgramStateOldSaveSingleModel(unittest.TestCase):
1387 1388 1389 1390
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
Y
YuanRisheng 已提交
1400
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

1413
            place = self.set_place()
H
hong 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1472
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1473 1474 1475
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

Y
YuanRisheng 已提交
1476
            save_dir = os.path.join(temp_dir.name, "test_program_2")
H
hong 已提交
1477
            fluid.io.save_persistables(
Y
YuanRisheng 已提交
1478
                exe, save_dir, main_program, filename="model_1")
H
hong 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1488
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1489 1490 1491 1492
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
            program_state = fluid.load_program_state(
Y
YuanRisheng 已提交
1493
                os.path.join(save_dir, "model_1"),
H
hong 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
                var_list=fluid.io.get_program_persistable_vars(main_program))
            fluid.set_program_state(main_program, program_state)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            with self.assertRaises(ValueError):
Y
YuanRisheng 已提交
1505
                fluid.load_program_state(os.path.join(save_dir, "model_1"))
H
hong 已提交
1506 1507 1508

            with self.assertRaises(TypeError):
                fluid.load_program_state(
Y
YuanRisheng 已提交
1509
                    os.path.join(save_dir, "model_1"), var_list=["str"])
H
hong 已提交
1510 1511 1512

            with self.assertRaises(RuntimeError):
                fluid.load_program_state(
Y
YuanRisheng 已提交
1513
                    os.path.join(save_dir, "model_1"),
H
hong 已提交
1514 1515 1516 1517
                    var_list=[
                        main_program.global_block().create_var(
                            name="fake_var_name", persistable=True)
                    ])
Y
YuanRisheng 已提交
1518
        temp_dir.cleanup()
H
hong 已提交
1519 1520


W
WeiXin 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
class TestStaticSaveLoadPickle(unittest.TestCase):
    def test_pickle_protocol(self):
        # enable static mode
        paddle.enable_static()

        with new_program_scope():
            # create network
            x = paddle.static.data(
                name="static_save_load_large_x",
                shape=[None, 10],
                dtype='float32')
            z = paddle.static.nn.fc(x, 10, bias_attr=False)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()

            base_map = {}
            for var in prog.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

Y
YuanRisheng 已提交
1547 1548
            temp_dir = tempfile.TemporaryDirectory()
            path = os.path.join(temp_dir.name, "test_static_save_load_pickle",
W
WeiXin 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
                                "pickle_protocol")

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 2.0)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 1)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 5)

            protocols = [2, ]
            if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
                protocols += [3, 4]
            for protocol in protocols:
                paddle.fluid.save(prog, path, protocol)
                # set var to zero
                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
                        ten = fluid.global_scope().find_var(
                            var.name).get_tensor()
                        ten.set(np.zeros_like(np.array(ten)), place)

                        new_t = np.array(fluid.global_scope().find_var(var.name)
                                         .get_tensor())
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

                paddle.fluid.load(prog, path)

                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
                        new_t = np.array(fluid.global_scope().find_var(var.name)
                                         .get_tensor())
                        base_t = base_map[var.name]
                        self.assertTrue(np.array_equal(new_t, base_t))


H
hong 已提交
1586
if __name__ == '__main__':
1587
    paddle.enable_static()
H
hong 已提交
1588
    unittest.main()