auto_parallel_parallelizer.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.utils import print_program_with_distributed_attr
import paddle.fluid.core as core

paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
ROOT_MESH = auto.ProcessMesh([0, 1])


class MLPLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = self.dropout(out)
        out = self.linear2(out)

        return out


def mlp_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="input",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32')
        label = static.data(
            name="label", shape=[batch_size, sequence_len, 1], dtype='float32')

        auto.shard_tensor(input, _global_process_mesh, dim_mapping=[-1, -1, -1])
        auto.set_pipeline_stage(1)

        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            dropout_ratio=0.1,
            initializer_range=0.02)

        predict = mlp(input)

        cost = layers.cross_entropy(input=predict, label=label)
        avg_cost = layers.mean(x=cost)

    return avg_cost, train_program, start_program


class TestMLPAutoParallelizer(unittest.TestCase):
    def test_mlp_serial(self):

        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH)

        dist_strategy = fleet.DistributedStrategy()
        dist_strategy.amp = False
        dist_strategy.pipeline = False
        dist_strategy.recompute = False

        # init parallel optimizer
        dist_strategy.semi_auto = True

        fleet.init(is_collective=True, strategy=dist_strategy)

        train_program = static.Program()
        start_program = static.Program()
        loss, train_program, start_program = mlp_pretrain_forward(train_program,
                                                                  start_program)

        optimizer = paddle.fluid.optimizer.AdamOptimizer(
            learning_rate=0.00001,
            beta1=0.9,
            beta2=0.999,
            epsilon=1e-08,
            grad_clip=None)

        optimizer = fleet.distributed_optimizer(optimizer)
        _, _, distributed_startup_program, distributed_main_program = optimizer.minimize(
            loss, start_program)
        suffix = core.kAutoParallelSuffix()
        for block in distributed_main_program.blocks:
            for op in block.ops:
                for attr_name in op.attr_names:
                    self.assertTrue(suffix not in attr_name)
        # print_program_with_distributed_attr(distributed_main_program)
        self.assertIsNotNone(distributed_startup_program)
        self.assertIsNotNone(distributed_main_program)


if __name__ == "__main__":
    unittest.main()