# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import paddle.nn as nn import paddle.static as static import paddle.nn.functional as F import paddle.utils as utils from paddle.fluid import layers from paddle.distributed import fleet import paddle.distributed.auto_parallel as auto from paddle.distributed.auto_parallel.utils import print_program_with_distributed_attr import paddle.fluid.core as core paddle.enable_static() _global_parallel_strategy = None _global_process_mesh = None ROOT_MESH = auto.ProcessMesh([0, 1]) class MLPLayer(nn.Layer): def __init__(self, hidden_size=1024, intermediate_size=4 * 1024, dropout_ratio=0.1, initializer_range=0.02): super(MLPLayer, self).__init__() d_model = hidden_size dim_feedforward = intermediate_size weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal( mean=0.0, std=initializer_range)) bias_attr = None self.linear0 = nn.Linear( d_model, dim_feedforward, weight_attr, bias_attr=bias_attr) self.linear1 = nn.Linear( dim_feedforward, d_model, weight_attr, bias_attr=bias_attr) self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr) self.norm = nn.LayerNorm(d_model, epsilon=1e-5) self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train") def forward(self, input): out = self.norm(input) out = self.linear0(out) out = F.gelu(out, approximate=True) out = self.linear1(out) out = self.dropout(out) out = self.linear2(out) return out def mlp_pretrain_forward(train_program, start_program): with static.program_guard(train_program, start_program), utils.unique_name.guard(): batch_size = 4 hidden_size = 1024 sequence_len = 512 input = static.data( name="input", shape=[batch_size, sequence_len, hidden_size], dtype='float32') label = static.data( name="label", shape=[batch_size, sequence_len, 1], dtype='float32') auto.shard_tensor(input, _global_process_mesh, dim_mapping=[-1, -1, -1]) auto.set_pipeline_stage(1) mlp = MLPLayer( hidden_size=hidden_size, intermediate_size=4 * hidden_size, dropout_ratio=0.1, initializer_range=0.02) predict = mlp(input) cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) return avg_cost, train_program, start_program class TestMLPAutoParallelizer(unittest.TestCase): def test_mlp_serial(self): global _global_process_mesh _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH) dist_strategy = fleet.DistributedStrategy() dist_strategy.amp = False dist_strategy.pipeline = False dist_strategy.recompute = False # init parallel optimizer dist_strategy.semi_auto = True fleet.init(is_collective=True, strategy=dist_strategy) train_program = static.Program() start_program = static.Program() loss, train_program, start_program = mlp_pretrain_forward(train_program, start_program) optimizer = paddle.fluid.optimizer.AdamOptimizer( learning_rate=0.00001, beta1=0.9, beta2=0.999, epsilon=1e-08, grad_clip=None) optimizer = fleet.distributed_optimizer(optimizer) _, _, distributed_startup_program, distributed_main_program = optimizer.minimize( loss, start_program) suffix = core.kAutoParallelSuffix() for block in distributed_main_program.blocks: for op in block.ops: for attr_name in op.attr_names: self.assertTrue(suffix not in attr_name) # print_program_with_distributed_attr(distributed_main_program) self.assertIsNotNone(distributed_startup_program) self.assertIsNotNone(distributed_main_program) if __name__ == "__main__": unittest.main()