test_dataset.py 48.7 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18 19

import os
20
import tempfile
X
xjqbest 已提交
21 22
import unittest

23 24 25 26
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core

X
xjqbest 已提交
27 28

class TestDataset(unittest.TestCase):
29
    """TestCases for Dataset."""
30

Z
Zeng Jinle 已提交
31 32 33 34 35
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
36
    def test_dataset_create(self):
37
        """Testcase for dataset create."""
X
xjqbest 已提交
38
        try:
39
            dataset = paddle.distributed.InMemoryDataset()
X
xjqbest 已提交
40 41 42 43
        except:
            self.assertTrue(False)

        try:
44
            dataset = paddle.distributed.QueueDataset()
X
xjqbest 已提交
45 46 47
        except:
            self.assertTrue(False)

48
        try:
49
            dataset = paddle.distributed.fleet.dataset.FileInstantDataset()
50 51 52
        except:
            self.assertTrue(False)

X
xjqbest 已提交
53
        try:
54
            dataset = paddle.distributed.fleet.dataset.MyOwnDataset()
X
xjqbest 已提交
55 56 57 58
            self.assertTrue(False)
        except:
            self.assertTrue(True)

59 60 61 62 63 64 65
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
66
        dataset._set_trainer_num(1)
67 68
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)
69
        self.assertEqual(dataset.trainer_num, 1)
70

71 72 73 74 75 76 77 78
    def test_shuffle_by_uid(self):
        """
        Testcase for shuffle_by_uid.
        """
        dataset = paddle.distributed.InMemoryDataset()
        dataset._set_uid_slot('6048')
        dataset._set_shuffle_by_uid(True)

79 80 81 82
    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
83 84 85 86 87 88

        temp_dir = tempfile.TemporaryDirectory()
        dump_a_path = os.path.join(temp_dir.name, 'test_run_with_dump_a.txt')
        dump_b_path = os.path.join(temp_dir.name, 'test_run_with_dump_b.txt')

        with open(dump_a_path, "w") as f:
89 90 91 92
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
93
        with open(dump_b_path, "w") as f:
94 95 96 97 98 99 100 101 102
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
103 104
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="int64", lod_level=1
105
            )
106 107
            slots_vars.append(var)

108
        dataset = paddle.distributed.InMemoryDataset()
109 110 111
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars
        )
112
        dataset.update_settings(pipe_command="cat1")
113 114 115 116 117 118
        dataset._init_distributed_settings(
            parse_ins_id=True,
            parse_content=True,
            fea_eval=True,
            candidate_size=10000,
        )
119
        dataset.set_filelist([dump_a_path, dump_b_path])
120 121 122
        dataset.load_into_memory()
        dataset.local_shuffle()

123 124 125 126 127 128
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        exe.run(startup_program)
129 130
        for i in range(2):
            try:
131
                exe.train_from_dataset(main_program, dataset)
132 133 134 135 136
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

137
        temp_dir.cleanup()
138

X
xjqbest 已提交
139
    def test_dataset_config(self):
140
        """Testcase for dataset configuration."""
X
xjqbest 已提交
141 142 143 144 145
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
146
        dataset.set_download_cmd("./read_from_afs my_fs_name my_fs_ugi")
147
        dataset.set_enable_pv_merge(False)
X
xjqbest 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

165 166 167 168 169 170 171
        download_cmd = dataset.get_download_cmd()
        self.assertEqual(download_cmd, "./read_from_afs my_fs_name my_fs_ugi")

    def test_set_download_cmd(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
172
        temp_dir = tempfile.TemporaryDirectory()
173 174 175 176 177 178
        filename1 = os.path.join(
            temp_dir.name, "afs:test_in_memory_dataset_run_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "afs:test_in_memory_dataset_run_b.txt"
        )
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        with open(filename1, "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(filename2, "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
195 196
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="int64", lod_level=1
197
            )
198 199
            slots_vars.append(var)

200
        dataset = paddle.distributed.InMemoryDataset()
201 202 203 204 205 206 207
        dataset.init(
            batch_size=32,
            thread_num=3,
            pipe_command="cat",
            download_cmd="cat",
            use_var=slots_vars,
        )
208 209
        dataset.set_filelist([filename1, filename2])
        dataset.load_into_memory()
210 211 212 213 214
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
215
        exe = fluid.Executor(fluid.CPUPlace())
216
        exe.run(startup_program)
217
        if self.use_data_loader:
218
            data_loader = fluid.io.DataLoader.from_dataset(
219 220
                dataset, fluid.cpu_places(), self.drop_last
            )
221 222
            for i in range(self.epoch_num):
                for data in data_loader():
223
                    exe.run(main_program, feed=data)
224 225 226
        else:
            for i in range(self.epoch_num):
                try:
227
                    exe.train_from_dataset(main_program, dataset)
228 229 230
                except Exception as e:
                    self.assertTrue(False)

231
        temp_dir.cleanup()
232

X
xjqbest 已提交
233
    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
234
        """
X
xjqbest 已提交
235
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
236
        """
237
        temp_dir = tempfile.TemporaryDirectory()
238 239 240 241 242 243
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_run_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_run_b.txt"
        )
244 245

        with open(filename1, "w") as f:
X
xjqbest 已提交
246 247 248 249
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
250
        with open(filename2, "w") as f:
X
xjqbest 已提交
251 252 253 254 255 256
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

257
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
258 259
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
260 261
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="int64", lod_level=1
262
            )
X
xjqbest 已提交
263 264
            slots_vars.append(var)

265
        dataset = paddle.distributed.InMemoryDataset()
266 267 268
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars
        )
269
        dataset._init_distributed_settings(fea_eval=True, candidate_size=1)
270
        dataset.set_filelist([filename1, filename2])
X
xjqbest 已提交
271
        dataset.load_into_memory()
272
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
273
        dataset.local_shuffle()
274 275
        dataset._set_generate_unique_feasigns(True, 15)
        dataset._generate_local_tables_unlock(0, 11, 1, 25, 15)
X
xjqbest 已提交
276 277
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
278
        if self.use_data_loader:
279
            data_loader = fluid.io.DataLoader.from_dataset(
280 281
                dataset, fluid.cpu_places(), self.drop_last
            )
Z
Zeng Jinle 已提交
282 283 284 285 286 287
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
288 289 290
                    exe.train_from_dataset(
                        fluid.default_main_program(), dataset
                    )
Z
Zeng Jinle 已提交
291 292
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
293

294
        temp_dir.cleanup()
X
xjqbest 已提交
295

L
lxsbupt 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    def test_in_memory_dataset_gpugraph_mode(self):
        """
        Testcase for InMemoryDataset in gpugraph mode.
        """
        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_feed_type("SlotRecordInMemoryDataFeed")
        graph_config = {
            "walk_len": 24,
            "walk_degree": 10,
            "once_sample_startid_len": 80000,
            "sample_times_one_chunk": 5,
            "window": 3,
            "debug_mode": 0,
            "batch_size": 800,
            "meta_path": "cuid2clk-clk2cuid;cuid2conv-conv2cuid;clk2cuid-cuid2clk;clk2cuid-cuid2conv",
            "gpu_graph_training": 1,
        }
        dataset.set_graph_config(graph_config)
        dataset.set_pass_id(0)
        dataset.get_pass_id()
316
        dataset.get_epoch_finish()
L
lxsbupt 已提交
317

318 319 320 321
    def test_in_memory_dataset_masterpatch(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
322
        temp_dir = tempfile.TemporaryDirectory()
323 324 325 326 327 328
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_masterpatch_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_masterpatch_b.txt"
        )
329 330

        with open(filename1, "w") as f:
331 332 333 334 335 336 337 338 339 340
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
341
        with open(filename2, "w") as f:
342 343 344 345 346 347 348 349 350 351 352 353
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            for slot in slots[:2]:
G
GGBond8488 已提交
354 355
                var = paddle.static.data(
                    name=slot, shape=[-1, 1], dtype="int64", lod_level=1
356
                )
357 358
                slots_vars.append(var)
            for slot in slots[2:]:
G
GGBond8488 已提交
359 360
                var = paddle.static.data(
                    name=slot, shape=[-1, 1], dtype="float32", lod_level=1
361
                )
362 363
                slots_vars.append(var)

364
        dataset = paddle.distributed.InMemoryDataset()
365 366 367
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars
        )
368
        dataset._init_distributed_settings(parse_ins_id=True)
369 370 371 372 373 374
        dataset.set_filelist(
            [
                "test_in_memory_dataset_masterpatch_a.txt",
                "test_in_memory_dataset_masterpatch_b.txt",
            ]
        )
375 376 377 378 379 380 381 382 383 384 385 386 387 388
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

389
        # dataset._set_merge_by_lineid(2)
390
        dataset.update_settings(merge_size=2)
391 392
        dataset.dataset.merge_by_lineid()

393
        temp_dir.cleanup()
394

395 396 397 398
    def test_in_memory_dataset_masterpatch1(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
399
        temp_dir = tempfile.TemporaryDirectory()
400 401 402 403 404 405
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_masterpatch1_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_masterpatch1_b.txt"
        )
406 407

        with open(filename1, "w") as f:
408 409 410 411 412 413 414 415 416 417
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
418
        with open(filename2, "w") as f:
419 420 421 422 423 424 425 426 427 428
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
429 430
            var1 = paddle.static.data(
                name="slot1", shape=[-1, 1], dtype="int64", lod_level=0
431
            )
G
GGBond8488 已提交
432 433
            var2 = paddle.static.data(
                name="slot2", shape=[-1, 1], dtype="int64", lod_level=0
434
            )
G
GGBond8488 已提交
435 436
            var3 = paddle.static.data(
                name="slot3", shape=[-1, 1], dtype="float32", lod_level=0
437
            )
G
GGBond8488 已提交
438 439
            var4 = paddle.static.data(
                name="slot4", shape=[-1, 1], dtype="float32", lod_level=0
440
            )
441 442
            slots_vars = [var1, var2, var3, var4]

443
        dataset = paddle.distributed.InMemoryDataset()
444 445 446
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars
        )
447
        dataset._init_distributed_settings(parse_ins_id=True)
448 449 450 451 452 453
        dataset.set_filelist(
            [
                "test_in_memory_dataset_masterpatch1_a.txt",
                "test_in_memory_dataset_masterpatch1_b.txt",
            ]
        )
454 455 456 457 458 459 460 461 462 463 464 465 466 467
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

468
        dataset._set_merge_by_lineid(2)
469 470
        dataset.dataset.merge_by_lineid()

471
        temp_dir.cleanup()
472

473 474 475 476 477 478
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
479
        temp_dir = tempfile.TemporaryDirectory()
480 481 482 483 484 485
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_run_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_run_b.txt"
        )
486 487

        with open(filename1, "w") as f:
488 489 490 491
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
492
        with open(filename2, "w") as f:
493 494 495 496 497 498 499 500 501
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
502 503
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="float32", lod_level=1
504
            )
505 506
            slots_vars.append(var)

507
        dataset = paddle.distributed.InMemoryDataset()
508 509 510
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars
        )
511
        dataset.set_filelist([filename1, filename2])
512 513 514
        dataset.load_into_memory()
        dataset.local_shuffle()

515 516 517 518 519
        exe = fluid.Executor(
            fluid.CPUPlace()
            if not core.is_compiled_with_cuda()
            else fluid.CUDAPlace(0)
        )
520
        exe.run(fluid.default_startup_program())
521 522 523 524

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=1
                )
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2
                )
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2
                )
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=3
                )
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=4
                )
540 541 542 543 544
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
545
        if self.use_data_loader:
546
            data_loader = fluid.io.DataLoader.from_dataset(
547 548
                dataset, fluid.cpu_places(), self.drop_last
            )
Z
Zeng Jinle 已提交
549 550 551 552 553 554
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
555 556 557
                    exe.train_from_dataset(
                        fluid.default_main_program(), dataset
                    )
Z
Zeng Jinle 已提交
558 559
                except Exception as e:
                    self.assertTrue(False)
560

561 562 563
        dataset._set_merge_by_lineid(2)
        dataset._set_parse_ins_id(False)
        dataset._set_fleet_send_sleep_seconds(2)
564 565 566 567
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
568
        dataset.dataset.merge_by_lineid()
569 570
        dataset._set_merge_by_lineid(30)
        dataset._set_parse_ins_id(False)
571 572
        dataset.load_into_memory()
        dataset.dataset.merge_by_lineid()
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        dataset.update_settings(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=[],
            fs_name="",
            fs_ugi="",
            download_cmd="cat",
            merge_size=-1,
            parse_ins_id=False,
            parse_content=False,
            fleet_send_batch_size=2,
            fleet_send_sleep_seconds=2,
            fea_eval=True,
        )
589
        fleet_ptr = fluid.core.Fleet()
590
        fleet_ptr.set_client2client_config(1, 1, 1)
591
        fleet_ptr.get_cache_threshold(0)
592

593
        temp_dir.cleanup()
594

X
xjqbest 已提交
595
    def test_queue_dataset_run(self):
X
xjqbest 已提交
596
        """
X
xjqbest 已提交
597
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
598
        """
599 600 601 602 603
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name, "test_queue_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name, "test_queue_dataset_run_b.txt")

        with open(filename1, "w") as f:
X
xjqbest 已提交
604 605 606 607
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
608
        with open(filename2, "w") as f:
X
xjqbest 已提交
609 610 611 612 613 614
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

615
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
616 617
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
618 619
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="int64", lod_level=1
620
            )
X
xjqbest 已提交
621 622
            slots_vars.append(var)

623
        dataset = paddle.distributed.QueueDataset()
624 625 626
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars
        )
627
        dataset.set_filelist([filename1, filename2])
X
xjqbest 已提交
628 629 630

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
631
        if self.use_data_loader:
632
            data_loader = fluid.io.DataLoader.from_dataset(
633 634
                dataset, fluid.cpu_places(), self.drop_last
            )
Z
Zeng Jinle 已提交
635 636 637 638 639 640
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
641 642 643
                    exe.train_from_dataset(
                        fluid.default_main_program(), dataset
                    )
Z
Zeng Jinle 已提交
644 645
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
646

647
        dataset2 = paddle.distributed.QueueDataset()
648 649 650
        dataset2.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars
        )
651 652 653 654 655 656 657 658
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

659
        temp_dir.cleanup()
X
xjqbest 已提交
660

661 662 663 664 665 666
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
667 668 669 670 671
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name, "test_queue_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name, "test_queue_dataset_run_b.txt")

        with open(filename1, "w") as f:
672 673 674 675
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
676
        with open(filename2, "w") as f:
677 678 679 680 681 682 683 684 685
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
686 687
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="float32", lod_level=1
688
            )
689 690
            slots_vars.append(var)

691
        dataset = paddle.distributed.QueueDataset()
692 693 694
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars
        )
695
        dataset.set_filelist([filename1, filename2])
696

697 698 699 700 701
        exe = fluid.Executor(
            fluid.CPUPlace()
            if not core.is_compiled_with_cuda()
            else fluid.CUDAPlace(0)
        )
702 703
        exe.run(fluid.default_startup_program())
        if self.use_data_loader:
704
            data_loader = fluid.io.DataLoader.from_dataset(
705 706
                dataset, fluid.cpu_places(), self.drop_last
            )
707 708 709 710 711 712
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
713 714 715
                    exe.train_from_dataset(
                        fluid.default_main_program(), dataset
                    )
716 717 718
                except Exception as e:
                    self.assertTrue(False)

719
        temp_dir.cleanup()
720 721 722 723 724 725 726

    def test_queue_dataset_run_3(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
727 728 729 730 731
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name, "test_queue_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name, "test_queue_dataset_run_b.txt")

        with open(filename1, "w") as f:
732 733 734 735 736
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)
737
        with open(filename2, "w") as f:
738 739 740 741 742 743 744 745 746
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
747 748 749
            var = fluid.data(
                name=slot, shape=[None, 1], dtype="int64", lod_level=1
            )
750 751
            slots_vars.append(var)

752
        dataset = paddle.distributed.InMemoryDataset()
753 754 755 756 757 758 759
        dataset.init(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=slots_vars,
        )
760
        dataset.set_filelist([filename1, filename2])
761 762
        dataset.load_into_memory()

763 764 765 766 767
        exe = fluid.Executor(
            fluid.CPUPlace()
            if not core.is_compiled_with_cuda()
            else fluid.CUDAPlace(0)
        )
768
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
769
        if self.use_data_loader:
770
            data_loader = fluid.io.DataLoader.from_dataset(
771 772
                dataset, fluid.cpu_places(), self.drop_last
            )
Z
Zeng Jinle 已提交
773 774 775 776 777 778
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
779 780 781
                    exe.train_from_dataset(
                        fluid.default_main_program(), dataset
                    )
Z
Zeng Jinle 已提交
782 783
                except Exception as e:
                    self.assertTrue(False)
784

785
        temp_dir.cleanup()
786

D
danleifeng 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    def test_run_with_inmemory_dataset_train_debug_mode(self):
        """
        Testcase for InMemoryDataset from create to run.
        """

        temp_dir = tempfile.TemporaryDirectory()
        dump_a_path = os.path.join(temp_dir.name, 'test_run_with_dump_a.txt')
        dump_b_path = os.path.join(temp_dir.name, 'test_run_with_dump_b.txt')

        with open(dump_a_path, "w") as f:
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(dump_b_path, "w") as f:
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
811 812
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="int64", lod_level=1
813
            )
D
danleifeng 已提交
814 815 816
            slots_vars.append(var)

        dataset = paddle.distributed.InMemoryDataset()
817 818 819 820 821 822 823 824 825 826 827 828 829
        dataset.init(
            batch_size=32,
            thread_num=1,
            pipe_command="cat",
            data_feed_type="SlotRecordInMemoryDataFeed",
            use_var=slots_vars,
        )
        dataset._init_distributed_settings(
            parse_ins_id=True,
            parse_content=True,
            fea_eval=True,
            candidate_size=10000,
        )
D
danleifeng 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        dataset.set_filelist([dump_a_path, dump_b_path])
        dataset.load_into_memory()

        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        exe.run(startup_program)
        for i in range(2):
            try:
                exe.train_from_dataset(main_program, dataset, debug=True)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        temp_dir.cleanup()

L
lxsbupt 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    def test_cuda_in_memory_dataset_run(self):
        """
        Testcase for cuda inmemory dataset hogwild_worker train to run(barrier).
        """
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_run_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset_run_b.txt"
        )

        with open(filename1, "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(filename2, "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
G
GGBond8488 已提交
876 877
            var = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="int64", lod_level=1
L
lxsbupt 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
            )
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_feed_type("SlotRecordInMemoryDataFeed")
        dataset.set_batch_size(1)
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.set_filelist([filename1, filename2])

        graph_config = {
            "walk_len": 24,
            "walk_degree": 10,
            "once_sample_startid_len": 80000,
            "sample_times_one_chunk": 5,
            "window": 3,
            "debug_mode": 0,
            "batch_size": 800,
            "meta_path": "cuid2clk-clk2cuid;cuid2conv-conv2cuid;clk2cuid-cuid2clk;clk2cuid-cuid2conv",
            "gpu_graph_training": 1,
        }
        dataset.set_graph_config(graph_config)
        dataset.set_pass_id(2)
        pass_id = dataset.get_pass_id()

        dataset.load_into_memory()

        dataset.get_memory_data_size()

        exe = fluid.Executor(
            fluid.CPUPlace()
            if not core.is_compiled_with_cuda()
            else fluid.CUDAPlace(0)
        )
        exe.run(fluid.default_startup_program())
        for i in range(self.epoch_num):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
            except Exception as e:
                self.assertTrue(False)
        temp_dir.cleanup()

X
xjqbest 已提交
920

Z
Zeng Jinle 已提交
921
class TestDatasetWithDataLoader(TestDataset):
X
xujiaqi01 已提交
922 923 924 925
    """
    Test Dataset With Data Loader class. TestCases.
    """

Z
Zeng Jinle 已提交
926
    def setUp(self):
X
xujiaqi01 已提交
927 928 929
        """
        Test Dataset With Data Loader, setUp.
        """
Z
Zeng Jinle 已提交
930 931 932 933 934
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


935
class TestDatasetWithFetchHandler(unittest.TestCase):
X
xujiaqi01 已提交
936 937 938 939
    """
    Test Dataset With Fetch Handler. TestCases.
    """

940
    def net(self):
X
xujiaqi01 已提交
941 942 943
        """
        Test Dataset With Fetch Handler. TestCases.
        """
944 945 946 947
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
G
GGBond8488 已提交
948 949
            data = paddle.static.data(
                name=slot, shape=[-1, 1], dtype="int64", lod_level=1
950
            )
951 952 953 954 955 956 957
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
C
Charles-hit 已提交
958
        fc = paddle.static.nn.fc(x=concated, activation='tanh', size=32)
959 960 961
        return slots_vars, fc

    def get_dataset(self, inputs, files):
X
xujiaqi01 已提交
962 963 964 965 966 967 968
        """
        Test Dataset With Fetch Handler. TestCases.

        Args:
            inputs(list): inputs of get_dataset
            files(list): files of  get_dataset
        """
969
        dataset = paddle.distributed.QueueDataset()
970 971 972
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=inputs
        )
973 974 975 976
        dataset.set_filelist(files)
        return dataset

    def setUp(self):
X
xujiaqi01 已提交
977 978 979
        """
        Test Dataset With Fetch Handler. TestCases.
        """
980
        self.temp_dir = tempfile.TemporaryDirectory()
981 982 983 984 985 986
        self.filename1 = os.path.join(
            self.temp_dir.name, "test_queue_dataset_run_a.txt"
        )
        self.filename2 = os.path.join(
            self.temp_dir.name, "test_queue_dataset_run_b.txt"
        )
987 988

        with open(self.filename1, "w") as f:
989 990 991 992
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
993
        with open(self.filename2, "w") as f:
994 995 996 997 998 999 1000
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
X
xujiaqi01 已提交
1001 1002 1003
        """
        Test Dataset With Fetch Handler. TestCases.
        """
1004
        self.temp_dir.cleanup()
1005 1006

    def test_dataset_none(self):
X
xujiaqi01 已提交
1007 1008 1009
        """
        Test Dataset With Fetch Handler. TestCases.
        """
1010
        slots_vars, out = self.net()
1011
        files = [self.filename1, self.filename2]
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
1024
            self.assertEqual(error_msg, str(e))
1025 1026 1027 1028
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
X
xujiaqi01 已提交
1029 1030 1031
        """
        Test Dataset With Fetch Handler. TestCases.
        """
1032
        slots_vars, out = self.net()
1033
        files = [self.filename1, self.filename2]
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

1046 1047 1048 1049 1050
    def test_fetch_handler(self):
        """
        Test Dataset With Fetch Handler. TestCases.
        """
        slots_vars, out = self.net()
1051
        files = [self.filename1, self.filename2]
1052 1053 1054 1055 1056 1057 1058 1059 1060
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
1061 1062 1063 1064 1065
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_handler=fh,
            )
1066 1067 1068 1069
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
1070
            self.assertEqual(error_msg, str(e))
1071 1072 1073
        except Exception as e:
            self.assertTrue(False)

1074

X
xujiaqi01 已提交
1075
class TestDataset2(unittest.TestCase):
1076
    """TestCases for Dataset."""
X
xujiaqi01 已提交
1077 1078

    def setUp(self):
1079
        """TestCases for Dataset."""
X
xujiaqi01 已提交
1080 1081 1082 1083 1084 1085 1086 1087
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

    def test_dataset_fleet(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
1088
        temp_dir = tempfile.TemporaryDirectory()
1089 1090 1091 1092 1093 1094
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset2_run_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset2_run_b.txt"
        )
1095 1096 1097

        self.skipTest("parameter server will add pslib UT later")

1098
        with open(filename1, "w") as f:
X
xujiaqi01 已提交
1099 1100 1101 1102
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
1103
        with open(filename2, "w") as f:
X
xujiaqi01 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
1113 1114 1115 1116
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import (
            fleet,
        )

X
xujiaqi01 已提交
1117 1118 1119 1120
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
G
GGBond8488 已提交
1121 1122
                var = paddle.static.data(
                    name=slot, shape=[-1, 1], dtype="float32", lod_level=1
1123
                )
X
xujiaqi01 已提交
1124
                slots_vars.append(var)
1125
            fake_cost = paddle.subtract(slots_vars[0], slots_vars[-1])
1126
            fake_cost = paddle.mean(fake_cost)
X
xujiaqi01 已提交
1127 1128 1129 1130
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
1131
                fleet.init()
X
xujiaqi01 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(adam)
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
1143 1144
            dataset = paddle.distributed.InMemoryDataset()

1145 1146 1147 1148 1149 1150
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars,
            )
1151
            dataset.set_filelist([filename1, filename2])
X
xujiaqi01 已提交
1152 1153 1154 1155
            dataset.load_into_memory()
            fleet._opt_info = None
            fleet._fleet_ptr = None

1156
        temp_dir.cleanup()
X
xujiaqi01 已提交
1157 1158 1159 1160 1161

    def test_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
1162
        temp_dir = tempfile.TemporaryDirectory()
1163 1164 1165 1166 1167 1168
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset2_run2_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset2_run2_b.txt"
        )
1169 1170

        with open(filename1, "w") as f:
X
xujiaqi01 已提交
1171 1172 1173 1174
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
1175
        with open(filename2, "w") as f:
X
xujiaqi01 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
1185
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
1186

X
xujiaqi01 已提交
1187 1188 1189 1190
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
G
GGBond8488 已提交
1191 1192
                var = paddle.static.data(
                    name=slot, shape=[-1, 1], dtype="float32", lod_level=1
1193
                )
X
xujiaqi01 已提交
1194
                slots_vars.append(var)
1195
            fake_cost = paddle.subtract(slots_vars[0], slots_vars[-1])
1196
            fake_cost = paddle.mean(fake_cost)
X
xujiaqi01 已提交
1197 1198 1199 1200
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
1201
                fleet.init()
X
xujiaqi01 已提交
1202 1203 1204 1205
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
1206 1207 1208 1209 1210 1211 1212 1213 1214
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx",
                    },
                )
X
xujiaqi01 已提交
1215 1216 1217 1218 1219 1220
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
1221
            dataset = paddle.distributed.InMemoryDataset()
1222 1223 1224 1225 1226 1227
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars,
            )
1228
            dataset.set_filelist([filename1, filename2])
X
xujiaqi01 已提交
1229
            dataset.load_into_memory()
X
xujiaqi01 已提交
1230 1231 1232 1233
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1234 1235
            fleet._opt_info = None
            fleet._fleet_ptr = None
1236 1237
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(fs_name="", fs_ugi="")
1238
            d = paddle.distributed.fleet.DatasetBase()
1239
            try:
1240
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
1260
            dataset._set_fleet_send_batch_size(1024)
1261 1262 1263 1264
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1265
            # dataset.get_pv_data_size()
1266 1267
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
1268
            dataset = paddle.distributed.QueueDataset()
1269 1270 1271 1272 1273 1274 1275 1276
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1277
            dataset = paddle.distributed.fleet.FileInstantDataset()
1278 1279 1280 1281 1282 1283 1284 1285
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1286

1287
        temp_dir.cleanup()
X
xujiaqi01 已提交
1288

1289 1290 1291 1292
    def test_bosps_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
1293
        temp_dir = tempfile.TemporaryDirectory()
1294 1295 1296 1297 1298 1299
        filename1 = os.path.join(
            temp_dir.name, "test_in_memory_dataset2_run2_a.txt"
        )
        filename2 = os.path.join(
            temp_dir.name, "test_in_memory_dataset2_run2_b.txt"
        )
1300 1301

        with open(filename1, "w") as f:
1302 1303 1304 1305
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
1306
        with open(filename2, "w") as f:
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
1317

1318 1319 1320 1321
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
G
GGBond8488 已提交
1322 1323
                var = paddle.static.data(
                    name=slot, shape=[-1, 1], dtype="float32", lod_level=1
1324
                )
1325
                slots_vars.append(var)
1326
            fake_cost = paddle.subtract(slots_vars[0], slots_vars[-1])
1327
            fake_cost = paddle.mean(fake_cost)
1328 1329 1330 1331 1332 1333 1334 1335 1336
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
                fleet.init()
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
1337 1338 1339 1340 1341 1342 1343 1344 1345
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx",
                    },
                )
1346 1347 1348 1349 1350 1351 1352
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
            dataset = paddle.distributed.fleet.BoxPSDataset()
1353 1354 1355 1356 1357 1358
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars,
            )
1359
            dataset.set_filelist([filename1, filename2])
1360 1361 1362 1363 1364 1365 1366 1367
            dataset.load_into_memory()
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
            fleet._opt_info = None
            fleet._fleet_ptr = None
            dataset = paddle.distributed.fleet.BoxPSDataset()
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
            dataset.init(
                rank_offset="",
                pv_batch_size=1,
                fs_name="",
                fs_ugi="",
                data_feed_type="MultiSlotInMemoryDataFeed",
                parse_logkey=True,
                merge_by_sid=True,
                enable_pv_merge=True,
            )
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
            d = paddle.distributed.fleet.DatasetBase()
            try:
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            dataset._set_parse_logkey(True)
            dataset._set_merge_by_sid(True)
            dataset._set_enable_pv_merge(True)
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
            dataset._set_fleet_send_batch_size(1024)
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1408
            # dataset.get_pv_data_size()
1409 1410
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
1411
        temp_dir.cleanup()
1412

X
xujiaqi01 已提交
1413

X
xjqbest 已提交
1414
if __name__ == '__main__':
X
xjqbest 已提交
1415
    unittest.main()