test_dataset.py 19.1 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18 19 20

from __future__ import print_function
import paddle.fluid as fluid
21
import paddle.compat as cpt
22
import paddle.fluid.core as core
X
xjqbest 已提交
23 24 25 26 27 28 29
import numpy as np
import os
import shutil
import unittest


class TestDataset(unittest.TestCase):
X
xjqbest 已提交
30
    """  TestCases for Dataset. """
31

Z
Zeng Jinle 已提交
32 33 34 35 36
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
37
    def test_dataset_create(self):
X
xjqbest 已提交
38
        """ Testcase for dataset create. """
X
xjqbest 已提交
39 40 41 42 43 44 45 46 47 48
        try:
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        except:
            self.assertTrue(False)

        try:
            dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        except:
            self.assertTrue(False)

49 50 51 52 53 54
        try:
            dataset = fluid.DatasetFactory().create_dataset(
                "FileInstantDataset")
        except:
            self.assertTrue(False)

X
xjqbest 已提交
55 56 57 58 59 60
        try:
            dataset = fluid.DatasetFactory().create_dataset("MyOwnDataset")
            self.assertTrue(False)
        except:
            self.assertTrue(True)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)

    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_run_with_dump_a.txt", "w") as f:
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_run_with_dump_b.txt", "w") as f:
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(
            ["test_run_with_dump_a.txt", "test_run_with_dump_b.txt"])
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.set_fea_eval(10000, True)
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        os.remove("./test_run_with_dump_a.txt")
        os.remove("./test_run_with_dump_b.txt")

X
xjqbest 已提交
120
    def test_dataset_config(self):
X
xjqbest 已提交
121
        """ Testcase for dataset configuration. """
X
xjqbest 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
145
        """
X
xjqbest 已提交
146
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
147 148
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
149 150 151 152
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
153
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
154 155 156 157 158 159
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

160
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
161 162
        slots_vars = []
        for slot in slots:
163 164
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
165 166 167 168 169
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
170 171 172 173
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
X
xjqbest 已提交
174 175 176
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
177 178
        dataset.set_fea_eval(10000, True)
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
179 180 181 182
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
197

X
xjqbest 已提交
198 199
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")
X
xjqbest 已提交
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=1)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=3)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=4)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
274

275
        dataset.set_merge_by_lineid(slots_vars)
276
        dataset.set_fleet_send_sleep_seconds(2)
277 278 279 280 281 282
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.release_memory()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
        fleet_ptr = fluid.core.Fleet()
283
        fleet_ptr.set_client2client_config(1, 1, 1)
284

285 286 287
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")

X
xjqbest 已提交
288
    def test_queue_dataset_run(self):
X
xjqbest 已提交
289
        """
X
xjqbest 已提交
290
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
291 292
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
293 294 295 296
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
297
        with open("test_queue_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
298 299 300 301 302 303
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

304
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
305 306
        slots_vars = []
        for slot in slots:
307 308
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
309 310 311 312 313
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
314 315
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
X
xjqbest 已提交
316 317 318 319 320
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
335

336 337 338 339 340 341 342 343 344 345 346 347 348
        dataset2 = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset2.set_use_var(slots_vars)
        dataset2.set_batch_size(32)
        dataset2.set_thread(3)
        dataset2.set_pipe_command("cat")
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

X
xjqbest 已提交
349 350
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")
X
xjqbest 已提交
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
402 403 404 405

        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

X
xjqbest 已提交
406

Z
Zeng Jinle 已提交
407 408 409 410 411 412 413
class TestDatasetWithDataLoader(TestDataset):
    def setUp(self):
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
class TestDatasetWithFetchHandler(unittest.TestCase):
    def net(self):
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
            data = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
        fc = fluid.layers.fc(input=concated, act='tanh', size=32)
        return slots_vars, fc

    def get_dataset(self, inputs, files):
        dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(files)
        dataset.set_pipe_command("cat")
        dataset.set_use_var(inputs)
        return dataset

    def setUp(self):
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_dataset_none(self):
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

    def test_fetch_handler(self):
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_handler=fh)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)


X
xjqbest 已提交
517
if __name__ == '__main__':
X
xjqbest 已提交
518
    unittest.main()