fake_dequantize_op.cu 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_dequantize_op.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
namespace paddle {
namespace operators {

template <typename T>
__global__ void KeDequantize(const T* in, const T* scale, T max_range, int num,
                             T* out) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < num) {
    out[idx] = in[idx] * scale[0] / max_range;
  }
}

template <typename T>
struct DequantizeFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor* scale,
                  T max_range, framework::Tensor* out) {
    const T* in_data = in->data<T>();
    const T* scale_factor = scale->data<T>();
    T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());

    int num = in->numel();
    int block = 512;
    int grid = (num + block - 1) / block;

    KeDequantize<T><<<grid, block, 0, dev_ctx.stream()>>>(
        in_data, scale_factor, max_range, num, out_data);
  }
};

47
template <typename T>
48 49 50
__global__ void DequantizeOneScaleQuantAxis0(const T* in, const T* scale,
                                             T max_range, int num, int channel,
                                             T* out) {
51 52 53 54 55 56 57 58 59
  int tid = threadIdx.x;
  int channel_size = num / channel;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;
  for (int i = tid; i < channel_size; i += blockDim.x) {
    out_c[i] = in_c[i] * scale[blockIdx.x] / max_range;
  }
}

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
template <typename T>
__global__ void DequantizeOneScaleQuantAxis1(const T* in, const T* scale,
                                             T max_range, const int num,
                                             const int cin, const int cout,
                                             T* out) {
  int cout_wh_size = num / cin;
  int wh_size = cout_wh_size / cout;

  T s = scale[blockIdx.x];
  const T* in_current = in + threadIdx.x * cout_wh_size + blockIdx.x * wh_size;
  T* out_current = out + threadIdx.x * cout_wh_size + blockIdx.x * wh_size;

  for (int i = 0; i < wh_size; i++) {
    out_current[i] = in_current[i] * s / max_range;
  }
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
template <typename T>
__global__ void DequantizeTwoScale(const T* in, const T* scale_one,
                                   const T* scale_two, T max_range, int num,
                                   int batch_size, int channel, T* out) {
  int tid = threadIdx.x;
  int channel_size = num / (batch_size * channel);
  int scale_index = blockIdx.x % channel;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;
  for (int i = tid; i < channel_size; i += blockDim.x) {
    out_c[i] = in_c[i] * scale_one[scale_index] * scale_two[0] / max_range;
  }
}

template <typename T>
struct ChannelDequantizeFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor** scales,
95 96 97
                  const int scale_num, T max_range, const int quant_axis,
                  framework::Tensor* out) {
    auto in_dims = in->dims();
98 99 100 101 102
    const T* in_data = in->data<T>();
    T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
    if (scale_num == 1) {
      int num = in->numel();
      const T* scale_factor = scales[0]->data<T>();
103 104 105 106 107 108 109 110 111 112 113 114 115
      if (quant_axis == 0) {
        int grid = in_dims[0];
        int block = 1024;
        DequantizeOneScaleQuantAxis0<T><<<grid, block, 0, dev_ctx.stream()>>>(
            in_data, scale_factor, max_range, num, in_dims[0], out_data);
      } else if (quant_axis == 1) {
        // Dequantize weight of Cin * Cout * W * H
        int grid = in_dims[1];
        int block = in_dims[0];
        DequantizeOneScaleQuantAxis1<T><<<grid, block, 0, dev_ctx.stream()>>>(
            in_data, scale_factor, max_range, num, in_dims[0], in_dims[1],
            out_data);
      }
116
    } else if (scale_num == 2) {
117
      // Not need to consider quant_axis
118 119 120 121 122 123 124 125 126 127 128 129 130 131
      int num = in->numel();
      int batch_size = in->dims()[0];
      int channel = in->dims()[1];
      const T* scale_one = scales[0]->data<T>();
      const T* scale_two = scales[1]->data<T>();
      int block = 1024;
      int grid = batch_size * channel;
      DequantizeTwoScale<T><<<grid, block, 0, dev_ctx.stream()>>>(
          in_data, scale_one, scale_two, max_range, num, batch_size, channel,
          out_data);
    }
  }
};

132 133
template struct DequantizeFunctor<platform::CUDADeviceContext, float>;
template struct DequantizeFunctor<platform::CUDADeviceContext, double>;
134 135
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, double>;
136 137 138 139

}  // namespace operators
}  // namespace paddle

140 141 142 143 144
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(fake_dequantize_max_abs,
                        ops::FakeDequantizeMaxAbsKernel<CUDA, float>,
                        ops::FakeDequantizeMaxAbsKernel<CUDA, double>);
Z
Zhen Wang 已提交
145 146 147 148
REGISTER_OP_CUDA_KERNEL(
    fake_channel_wise_dequantize_max_abs,
    ops::FakeChannelWiseDequantizeMaxAbsKernel<CUDA, float>,
    ops::FakeChannelWiseDequantizeMaxAbsKernel<CUDA, double>);