device_context.h 12.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/temporary_allocator.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
W
Wu Yi 已提交
26
#include "paddle/fluid/platform/dynload/nccl.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
28
#endif
D
dzhwinter 已提交
29

T
tensor-tang 已提交
30
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
31
#include "mkldnn.hpp"
T
tensor-tang 已提交
32 33
#endif

34 35
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
36 37
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
38 39 40
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
41
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
42 43 44 45

namespace paddle {
namespace platform {

C
chengduo 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*! \brief device temporary allocator singleton.
 *
 * Some operator needs temporary memory during computation, for example,
 * conv_gemm, which needs use col to store the result of im2col. If we
 * create a stack memory which is used by CUDA Kernel, before the
 * Computation(...) returns, we should add ctx->Wait(), because the
 * execution of CUDA is async, if there doesn't have ctx->Wait(),
 * the temporary memory will be released before the CUDA Kernel uses
 * it.
 *
 * DeviceTemporaryAllocator is a singleton, which contains a
 * `TemporaryAllocator` for each <Place, Stream>. And the TemporaryAllocator
 * contains a temp_allocation_queue which is used to store the temporary
 * allocations. The allocation, which is allocated by TemporaryAllocator,
 * is a unique_ptr,  and when it is not held by any variable, it will be
 * pushed into the temp_allocation_queue. There are two opportunities to free
 * the allocations of temp_allocation_queue:
 *  - when the Stream calls cudaStreamSynchronize;
 *  - when the allocation size of opportunities exceeds a certain threshold
65
 *    (defined by FLAGS_limit_of_tmp_allocation).
C
chengduo 已提交
66 67
 *
 * */
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class DeviceTemporaryAllocator {
 public:
  static DeviceTemporaryAllocator& Instance() {
    PADDLE_ENFORCE_NOT_NULL(allocators,
                            "Need to Create DeviceTemporaryAllocator first!");
    return *allocators;
  }

  static DeviceTemporaryAllocator& Init() {
    if (allocators == nullptr) {
      allocators = new DeviceTemporaryAllocator();
    }
    return *allocators;
  }

/*! \brief  Return handle of single temporary allocator. */
#ifdef PADDLE_WITH_CUDA
  platform::TemporaryAllocator& Get(const platform::Place& place,
                                    const cudaStream_t& stream);
#endif
  template <typename DeviceContext>
  platform::TemporaryAllocator& Get(const DeviceContext& dev_ctx);

  platform::TemporaryAllocator& Get(const platform::Place& place);

 private:
  DeviceTemporaryAllocator() : cpu_allocator_(platform::CPUPlace()) {}

  static DeviceTemporaryAllocator* allocators;

  platform::TemporaryAllocator cpu_allocator_;

#ifdef PADDLE_WITH_CUDA
  std::map<std::pair<platform::Place, cudaStream_t>,
           std::unique_ptr<platform::TemporaryAllocator>>
      device_allocator_;
#endif

  std::mutex mtx_;

  DISABLE_COPY_AND_ASSIGN(DeviceTemporaryAllocator);
};

Q
QI JUN 已提交
111 112 113
class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
114
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
115

116
  virtual void Wait() const {}
Q
QI JUN 已提交
117 118
};

Q
qijun 已提交
119 120
class CPUDeviceContext : public DeviceContext {
 public:
121
  CPUDeviceContext();
Q
qijun 已提交
122
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
123

124
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
125

L
liaogang 已提交
126
  Place GetPlace() const override;
Y
Yu Yang 已提交
127

Q
qijun 已提交
128
 private:
D
dzhwinter 已提交
129
  CPUPlace place_;
Q
qijun 已提交
130
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
131 132
};

Y
Yang Yu 已提交
133 134 135 136 137 138 139 140
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

141
#ifdef PADDLE_WITH_CUDA
142

Q
qijun 已提交
143
class EigenCudaStreamDevice;
S
sneaxiy 已提交
144 145 146 147 148 149 150 151 152 153 154 155
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place);
  ~CudnnHolder();
  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

 private:
  friend class CudnnWorkspaceHandle;
  void ReallocateWorkspace(size_t required_workspace_len);

  template <typename Callback>
  void RunFuncImpl(Callback&& cudnn_func, size_t required_workspace_len) {
Y
Yu Yang 已提交
156
    if (required_workspace_len > WorkspaceSize()) {
S
sneaxiy 已提交
157 158
      ReallocateWorkspace(required_workspace_len);
    }
Y
Yu Yang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    cudnn_func(WorkspacePtr());
  }

  inline void* WorkspacePtr() {
    if (workspace_) {
      return workspace_->ptr();
    } else {
      return nullptr;
    }
  }

  inline size_t WorkspaceSize() {
    if (workspace_) {
      return workspace_->size();
    } else {
      return 0;
    }
S
sneaxiy 已提交
176 177 178 179 180
  }

  std::mutex& Mutex() { return mtx_; }

  cudnnHandle_t cudnn_handle_;
Y
Yu Yang 已提交
181
  memory::AllocationPtr workspace_;
S
sneaxiy 已提交
182 183 184 185 186 187

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};
D
dongzhihong 已提交
188

S
sneaxiy 已提交
189 190 191 192
class CudnnWorkspaceHandle {
 public:
  /*! \brief The lock would not be acquired when constructor calls.
   *  The lock would be acquired when RunFunc() is called first time. */
S
sneaxiy 已提交
193
  inline explicit CudnnWorkspaceHandle(CudnnHolder* holder) : holder_(holder) {}
S
sneaxiy 已提交
194 195 196

  /*! \brief Thread which call RunFunc() would acquire the lock first
   *  before invoking cudnn functions. */
S
sneaxiy 已提交
197 198 199 200 201 202 203 204
  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_len) {
    if (!guard_) {
      guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
    }
    holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
                         required_workspace_len);
  }
S
sneaxiy 已提交
205

S
sneaxiy 已提交
206 207
  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;
S
sneaxiy 已提交
208 209 210 211 212 213

 private:
  CudnnHolder* holder_;  // not own
  std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};

214
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
215
 public:
D
dzhwinter 已提交
216
  explicit CUDADeviceContext(CUDAPlace place);
217
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
218

219
  /*! \brief  Wait for all operations completion in the stream. */
220
  void Wait() const override;
Q
QI JUN 已提交
221

222
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
223
  Place GetPlace() const override;
224

K
Kexin Zhao 已提交
225
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
226 227
  int GetComputeCapability() const;

228 229 230
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

231 232 233
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
253

254
  /*! \brief  Return cudnn  handle in the device context. */
255
  cudnnHandle_t cudnn_handle() const;
256

S
sneaxiy 已提交
257 258 259 260 261 262 263 264 265
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
266
  /*! \brief  Return cuda stream in the device context. */
267
  cudaStream_t stream() const;
Q
QI JUN 已提交
268

Q
qingqing01 已提交
269
#if !defined(_WIN32)
Q
qingqing01 已提交
270 271 272 273 274
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
275
#endif
Q
qingqing01 已提交
276

Y
Yu Yang 已提交
277 278 279 280 281 282
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
    PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
  }

S
sneaxiy 已提交
283 284 285 286 287
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
288
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
289

Q
QI JUN 已提交
290
 private:
D
dzhwinter 已提交
291
  CUDAPlace place_;
Q
QI JUN 已提交
292

Q
qijun 已提交
293
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
294
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
295
  std::unique_ptr<CudnnHolder> cudnn_holder_;
296
  cudaStream_t stream_;
297 298 299

  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
300

Q
qingqing01 已提交
301
#if !defined(_WIN32)
Q
qingqing01 已提交
302 303 304 305 306 307
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
308
#endif
Q
qingqing01 已提交
309

C
chengduo 已提交
310 311 312 313 314
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
315

S
fix bug  
sneaxiy 已提交
316
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
317
  std::unique_ptr<StreamCallbackManager> callback_manager_;
318

319
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
320
};
Q
qijun 已提交
321

Y
Yang Yu 已提交
322 323
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
324
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
325 326
};

C
chengduoZH 已提交
327
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
328 329 330 331 332 333
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
334

C
chengduoZH 已提交
335 336 337 338 339 340 341 342 343 344 345
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
346
#endif
Q
qijun 已提交
347

T
tensor-tang 已提交
348
#ifdef PADDLE_WITH_MKLDNN
S
Sylwester Fraczek 已提交
349 350 351 352 353 354
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<KeyBlob>>;

void set_cur_thread_id(int);
int get_cur_thread_id(void);

T
tensor-tang 已提交
355 356 357 358 359
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
360
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
361

362 363
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
364

365 366
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
367 368

 private:
369
  mkldnn::engine engine_;
370 371
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
372 373 374
};
#endif

D
dzhwinter 已提交
375 376 377 378 379
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
380
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
381 382 383 384 385
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
386
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
387 388 389 390 391 392 393
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
394
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
395

Y
Yang Yu 已提交
396 397 398 399 400 401 402
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

403 404
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
405 406
 private:
  static DeviceContextPool* pool;
407 408
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
409 410 411
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
412 413
}  // namespace platform
}  // namespace paddle