gpu_info.cc 11.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
L
liaogang 已提交
16

17
#include <algorithm>
S
sneaxiy 已提交
18 19
#include <cstdlib>
#include <string>
L
liaogang 已提交
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
24

25
#ifndef _WIN32
P
peizhilin 已提交
26
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
27
#else
P
peizhilin 已提交
28 29 30
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
P
peizhilin 已提交
31
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
32 33 34
#endif

DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
X
Xin Pan 已提交
35 36 37 38 39
              "Allocate a trunk of gpu memory that is this fraction of the "
              "total gpu memory size. Future memory usage will be allocated "
              "from the trunk. If the trunk doesn't have enough gpu memory, "
              "additional trunks of the same size will be requested from gpu "
              "until the gpu has no memory left for another trunk.");
L
liaogang 已提交
40

S
sneaxiy 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
DEFINE_double(
    initial_gpu_memory_in_mb, -1.0,
    "GPU memory chunk size in MB."
    "Allocator would allocate FLAGS_initial_gpu_memory_in_mb size "
    "chunk first and reallocate FLAGS_reallocate_gpu_memory_in_mb size "
    "chunk when the first chunk is not enough. This flag has higher priority "
    "than FLAGS_fraction_of_gpu_memory_to_use. Disable when less than 0.");

DEFINE_double(reallocate_gpu_memory_in_mb, -1.0,
              "GPU memory chunk size in MB."
              "If FLAGS_initial_gpu_memory_in_mb is set and "
              "FLAGS_reallocate_gpu_memory_in_mb "
              "is less than 0, it would be replaced by "
              "FLAGS_initial_gpu_memory_in_mb. Disable "
              "when FLAGS_initial_gpu_memory_in_mb is less than 0.");

57 58 59 60 61 62 63 64 65 66
DEFINE_bool(
    enable_cublas_tensor_op_math, false,
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

67 68 69 70 71 72 73 74 75
DEFINE_string(selected_gpus, "",
              "A list of device ids separated by comma, like: 0,1,2,3. "
              "This option is useful when doing multi process training and "
              "each process have only one device (GPU). If you want to use "
              "all visible devices, set this to empty string. NOTE: the "
              "reason of doing this is that we want to use P2P communication"
              "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
              "share-memory only.");

L
liaogang 已提交
76 77 78
namespace paddle {
namespace platform {

S
sneaxiy 已提交
79 80 81 82 83 84 85
static int GetCUDADeviceCountImpl() {
  const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES");
  if (cuda_visible_devices != nullptr) {
    std::string cuda_visible_devices_str(cuda_visible_devices);
    if (std::all_of(cuda_visible_devices_str.begin(),
                    cuda_visible_devices_str.end(),
                    [](char ch) { return ch == ' '; })) {
S
sneaxiy 已提交
86
      VLOG(2) << "CUDA_VISIBLE_DEVICES is set to be empty. No GPU detected.";
S
sneaxiy 已提交
87 88 89 90
      return 0;
    }
  }

L
liaogang 已提交
91
  int count;
L
liaogang 已提交
92
  PADDLE_ENFORCE(
L
liaogang 已提交
93
      cudaGetDeviceCount(&count),
94
      "cudaGetDeviceCount failed in paddle::platform::GetCUDADeviceCount");
L
liaogang 已提交
95 96 97
  return count;
}

S
sneaxiy 已提交
98 99 100 101 102
int GetCUDADeviceCount() {
  static auto dev_cnt = GetCUDADeviceCountImpl();
  return dev_cnt;
}

103 104 105 106 107 108 109 110 111
int GetCUDAComputeCapability(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  cudaDeviceProp device_prop;
  PADDLE_ENFORCE(cudaGetDeviceProperties(&device_prop, id),
                 "cudaGetDeviceProperties failed in "
                 "paddle::platform::GetCUDAComputeCapability");
  return device_prop.major * 10 + device_prop.minor;
}

C
chengduo 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
int GetCUDARuntimeVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int runtime_version = 0;
  PADDLE_ENFORCE(cudaRuntimeGetVersion(&runtime_version),
                 "cudaRuntimeGetVersion failed in "
                 "paddle::platform::cudaRuntimeGetVersion");
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int driver_version = 0;
  PADDLE_ENFORCE(cudaDriverGetVersion(&driver_version),
                 "cudaDriverGetVersion failed in "
                 "paddle::platform::GetCUDADriverVersion");
  return driver_version;
}

130 131 132 133 134 135 136 137 138 139
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
int GetCUDAMultiProcessors(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id),
      "cudaDeviceGetAttribute failed in "
      "paddle::platform::GetCUDAMultiProcessors");
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(cudaDeviceGetAttribute(
                     &count, cudaDevAttrMaxThreadsPerMultiProcessor, id),
                 "cudaDeviceGetAttribute failed in "
                 "paddle::platform::GetCUDAMaxThreadsPerMultiProcessor");
  return count;
}

L
liaogang 已提交
160 161
int GetCurrentDeviceId() {
  int device_id;
L
liaogang 已提交
162
  PADDLE_ENFORCE(
L
liaogang 已提交
163 164 165 166 167
      cudaGetDevice(&device_id),
      "cudaGetDevice failed in paddle::platform::GetCurrentDeviceId");
  return device_id;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
186
void SetDeviceId(int id) {
Q
qijun 已提交
187
  // TODO(qijun): find a better way to cache the cuda device count
Y
Yang Yang 已提交
188
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
L
liaogang 已提交
189
  PADDLE_ENFORCE(cudaSetDevice(id),
L
liaogang 已提交
190 191 192
                 "cudaSetDevice failed in paddle::platform::SetDeviceId");
}

193 194
void GpuMemoryUsage(size_t *available, size_t *total) {
  PADDLE_ENFORCE(cudaMemGetInfo(available, total),
L
liaogang 已提交
195 196 197 198 199 200 201
                 "cudaMemGetInfo failed in paddle::platform::GetMemoryUsage");
}

size_t GpuMaxAllocSize() {
  size_t total = 0;
  size_t available = 0;

202
  GpuMemoryUsage(&available, &total);
L
liaogang 已提交
203

L
liaogang 已提交
204
  // Reserve the rest for page tables, etc.
L
liaogang 已提交
205
  return static_cast<size_t>(total * FLAGS_fraction_of_gpu_memory_to_use);
L
liaogang 已提交
206 207
}

L
liaogang 已提交
208 209 210 211 212 213 214
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t total = 0;
C
chenweihang 已提交
215
  size_t available = 0;
L
liaogang 已提交
216

C
chenweihang 已提交
217
  GpuMemoryUsage(&available, &total);
M
minqiyang 已提交
218 219
  VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
           << total / 1024 / 1024 << "M";
220
  size_t reserving = static_cast<size_t>(0.05 * total);
L
liaogang 已提交
221
  // If available less than minimum chunk size, no usable memory exists.
C
chenweihang 已提交
222 223 224
  available =
      std::min(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(),
               total - reserving);
225 226

  // Reserving the rest memory for page tables, etc.
L
liaogang 已提交
227

C
chenweihang 已提交
228 229 230 231
  size_t allocating = static_cast<size_t>(FLAGS_fraction_of_gpu_memory_to_use *
                                          (total - reserving));
  PADDLE_ENFORCE_LE(allocating, available,
                    "Insufficient GPU memory to allocation.");
232

C
chenweihang 已提交
233
  return allocating;
L
liaogang 已提交
234 235
}

S
sneaxiy 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
size_t GpuFirstAllocateChunkSize() {
  if (FLAGS_initial_gpu_memory_in_mb <= 0) {
    return GpuMaxChunkSize();
  }

  size_t total = 0;
  size_t available = 0;

  GpuMemoryUsage(&available, &total);
  VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
           << total / 1024 / 1024 << "M";

  size_t initial_mem =
      static_cast<size_t>(FLAGS_initial_gpu_memory_in_mb * (1 << 20));
  PADDLE_ENFORCE_LE(initial_mem, available,
                    "Insufficient GPU memory to allocation.");
  return initial_mem;
}

size_t GpuReAllocateChunkSize() {
  if (FLAGS_initial_gpu_memory_in_mb <= 0) {
    return GpuMaxChunkSize();
  }

  double reallocate_mem = FLAGS_reallocate_gpu_memory_in_mb;
  if (reallocate_mem < 0) {
    PADDLE_ENFORCE(FLAGS_initial_gpu_memory_in_mb > 0,
                   "FLAGS_init_gpu_memory_to_use_mb must be larger than 0");
    reallocate_mem = FLAGS_initial_gpu_memory_in_mb;
  }

  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
           << total / 1024 / 1024 << "M";
  size_t realloc_mem = static_cast<size_t>(reallocate_mem * (1 << 20));
  PADDLE_ENFORCE_LE(realloc_mem, available,
                    "Insufficient GPU memory to allocation.");
  return realloc_mem;
}

L
liaogang 已提交
278 279
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
L
liaogang 已提交
280
  PADDLE_ENFORCE(cudaMemcpyAsync(dst, src, count, kind, stream),
281 282 283
                 "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync "
                 "(%p -> %p, length: %d)",
                 src, dst, static_cast<int>(count));
L
liaogang 已提交
284 285
}

286 287 288
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
  PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind),
289 290 291
                 "cudaMemcpy failed in paddle::platform::GpuMemcpySync (%p -> "
                 "%p, length: %d)",
                 src, dst, static_cast<int>(count));
292 293 294 295
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
L
liaogang 已提交
296
  PADDLE_ENFORCE(
L
liaogang 已提交
297
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream),
298 299 300 301 302 303 304 305
      "cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync");
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
  PADDLE_ENFORCE(
      cudaMemcpyPeer(dst, dst_device, src, src_device, count),
      "cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync");
L
liaogang 已提交
306
}
D
dzhwinter 已提交
307 308 309 310 311

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
  PADDLE_ENFORCE(cudaMemsetAsync(dst, value, count, stream),
                 "cudaMemsetAsync failed in paddle::platform::GpuMemsetAsync");
}
L
liaogang 已提交
312 313
}  // namespace platform
}  // namespace paddle