ContextProjectionOpGpu.cu 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hl_base.h"
16
#include "ContextProjectionOp.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

namespace paddle {

template <bool padding>
__global__ void KeContextProjectionForward(const real* input,
                                           const int* sequence,
                                           const real* weight,
                                           real* output,
                                           int input_dim,
                                           int context_length,
                                           int context_start,
                                           int begin_pad) {
  int idx = threadIdx.x;
  int block_size = blockDim.x;
  int sequenceId = blockIdx.x;
  int seq_start = sequence[sequenceId];
  int seq_end = sequence[sequenceId+1];
  real value = 0;

  int instances = seq_end - seq_start + context_length - 1;
  output += seq_start * input_dim * context_length;
  input += seq_start * input_dim;
  for (int k = 0; k <= input_dim / block_size; k++) {
    if (idx < input_dim) {
      for (int i = 0; i < instances; i++) {
        // i + context_start;
        if ((i + context_start) < 0) {
          if (padding) {
            value = weight[i * input_dim + idx];
          } else {
            continue;
          }
        } else if ((i + context_start) >= (seq_end - seq_start)) {
          if (padding) {
            value =
              weight[(begin_pad + i + context_start - (seq_end - seq_start)) *
                         input_dim + idx];
          } else {
            continue;
          }
        } else {
          value = input[(i + context_start) * input_dim + idx];
        }

        int outx = (i - context_length) < 0 ? i : (context_length - 1);
        int outy = (i - context_length) < 0 ? 0 : (i - (context_length - 1));
        real* output_r =
          output + outy * input_dim * context_length + outx * input_dim;
        for (int j = outy; j < seq_end - seq_start; j++) {
          output_r[idx] += value;
          if (j - outy == outx) break;
          output_r += (context_length - 1) * input_dim;
        }
      }
    }
    idx += block_size;
  }
}

void hl_context_projection_forward(const real* input,
                                   const int* sequence,
                                   real* weight,
                                   real* output,
                                   int num_sequences,
                                   int input_dim,
                                   int context_length,
                                   int context_start,
                                   int begin_pad,
                                   bool is_padding) {
  CHECK_NOTNULL(input);
  CHECK_NOTNULL(sequence);
  CHECK_NOTNULL(output);
  CHECK(!is_padding || weight);

  int block_size = 128;
  int blocks_x = num_sequences;
  int blocks_y = 1;
  dim3 threads(block_size, 1);
  dim3 grid(blocks_x, blocks_y);

  if (is_padding) {
    KeContextProjectionForward<true><<< grid, threads, 0, STREAM_DEFAULT >>>
      (input, sequence, weight, output, input_dim,
       context_length, context_start, begin_pad);
  } else  {
    KeContextProjectionForward<false><<< grid, threads, 0, STREAM_DEFAULT >>>
      (input, sequence, weight, output, input_dim,
       context_length, context_start, begin_pad);
  }
  CHECK_SYNC("hl_context_projection_forward failed");
}

template <>
void ContextProjectionForward<DEVICE_TYPE_GPU>(Tensor& output,
                                               const Tensor& input,
                                               const Tensor& weight,
                                               const Tensor& sequence,
                                               size_t context_length,
                                               int context_start,
                                               size_t begin_pad,
                                               bool is_padding) {
  CHECK(output.getData() && input.getData() && sequence.getData());
  CHECK_EQ(output.dims_.size(), 2);
  CHECK_EQ(input.dims_.size(), 2);
  CHECK_EQ(weight.dims_.size(), 2);
  CHECK_EQ(sequence.dims_.size(), 1);
  CHECK_EQ(output.dims_[1], input.dims_[1] * context_length);

  hl_context_projection_forward(input.getData(),
                                reinterpret_cast<int*>(sequence.getData()),
                                weight.getData(),
                                output.getData(),
                                sequence.dims_[0] - 1,
                                input.dims_[1],
                                context_length,
                                context_start,
                                begin_pad,
                                is_padding);
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
__global__ void KeContextProjectionBackwardData(real* out_grad,
                                                const int* sequence,
                                                real* in_grad,
                                                int input_dim,
                                                int context_length,
                                                int context_start) {
  int idx = threadIdx.x;
  int block_size = blockDim.x;
  int sequenceId = blockIdx.x;
  int seq_start = sequence[sequenceId];
  int seq_end = sequence[sequenceId+1];
  real value = 0;

  int instances = seq_end - seq_start + context_length - 1;
  out_grad += seq_start * input_dim * context_length;
  in_grad += seq_start * input_dim;
  for (int k = 0; k <= input_dim / block_size; k++) {
    if (idx < input_dim) {
      for (int i = 0; i < instances; i++) {
        if ((i + context_start) < 0) {
          continue;
        } else if ((i + context_start) >= (seq_end - seq_start)) {
          continue;
        } else {
          // value = 0;
          value = in_grad[(i + context_start) * input_dim + idx];
        }

        int outx = (i - context_length) < 0 ? i : (context_length - 1);
        int outy = (i - context_length) < 0 ? 0 : (i - (context_length - 1));
        real* output_r =
          out_grad + outy * input_dim * context_length + outx * input_dim;
        for (int j = outy; j < seq_end - seq_start; j++) {
          value += output_r[idx];
          if (j - outy == outx) break;
          output_r += (context_length - 1) * input_dim;
        }
        in_grad[(i + context_start) * input_dim + idx] = value;
      }
    }
    idx += block_size;
  }
}

void hl_context_projection_backward_data(real* out_grad,
                                         const int* sequence,
                                         real* input_grad,
                                         int num_sequences,
                                         int input_dim,
                                         int context_length,
                                         int context_start) {
  CHECK_NOTNULL(out_grad);
  CHECK_NOTNULL(sequence);
  CHECK_NOTNULL(input_grad);

  int block_size = 128;
  int blocks_x = num_sequences;
  int blocks_y = 1;
  dim3 threads(block_size, 1);
  dim3 grid(blocks_x, blocks_y);
  KeContextProjectionBackwardData<<< grid, threads, 0, STREAM_DEFAULT >>>
    (out_grad, sequence, input_grad, input_dim, context_length, context_start);
  CHECK_SYNC("hl_context_projection_backward_data failed");
}

template <>
void ContextProjectionBackwardData<DEVICE_TYPE_GPU>(Tensor& out_grad,
                                               Tensor& in_grad,
                                               const Tensor& sequence,
                                               size_t context_length,
                                               int context_start) {
  CHECK(in_grad.getData() && out_grad.getData() && sequence.getData());
  CHECK_EQ(out_grad.dims_.size(), 2);
  CHECK_EQ(in_grad.dims_.size(), 2);
  CHECK_EQ(sequence.dims_.size(), 1);
  CHECK_EQ(out_grad.dims_[1], in_grad.dims_[1] * context_length);

  hl_context_projection_backward_data(out_grad.getData(),
                reinterpret_cast<int*>(sequence.getData()),
                                      in_grad.getData(),
                                      sequence.dims_[0] - 1,
                                      in_grad.dims_[1],
                                      context_length,
                                      context_start);
}

template<int THREADS_X, int THREADS_Y>
__global__ void KeContextProjectionBackwardWeight(real* out_grad,
                                                  const int* sequence,
                                                  real* w_grad,
                                                  int num_sequences,
                                                  int w_dim,
                                                  int context_length,
                                                  int context_start,
                                                  int begin_pad) {
  __shared__ real sum_s[THREADS_Y][THREADS_X];
  int pad_of_block = (w_dim + THREADS_X - 1) / THREADS_X;
  const int idx = threadIdx.x;
  const int idy = threadIdx.y;
  int padId = blockIdx.x / pad_of_block;
  int weight_idx = idx + THREADS_X * (blockIdx.x % pad_of_block);
  int instanceId;
  real value = 0;
  real* output_r;

  sum_s[idy][idx] = 0.0f;
  if (weight_idx < w_dim) {
    for (int seqId = idy; seqId < num_sequences; seqId += THREADS_Y) {
      int seq_start = sequence[seqId];
      int seq_end = sequence[seqId+1];
      output_r = out_grad + seq_start * w_dim * context_length;

      if (context_start < 0) {
        if (padId + context_start < 0) {
          instanceId = padId;
        } else {
          // begin_pad > 0;
          instanceId = (padId - begin_pad) +
            (seq_end - seq_start) - context_start;
        }
      } else {
        if (padId + (seq_end - seq_start) < context_start) {
          continue;
        } else {
          // begin_pad == 0;
          instanceId = padId + (seq_end - seq_start) - context_start;
        }
      }

      int outx = (instanceId - context_length) < 0 ?
                 instanceId : (context_length - 1);
      int outy = (instanceId - context_length) < 0 ?
                 0 : (instanceId - (context_length - 1));
      output_r += outy * w_dim * context_length + outx * w_dim;
      for (int j = outy; j < seq_end - seq_start; j++) {
        value += output_r[weight_idx];
        if (j - outy == outx) break;
        output_r += (context_length - 1) * w_dim;
      }
    }
    sum_s[idy][idx] = value;
  }
  __syncthreads();

  for (int stride = THREADS_Y/2; stride > 0; stride = stride/2) {
    if (idy < stride) {
      sum_s[idy][idx] += sum_s[idy + stride][idx];
    }
    __syncthreads();
  }
  __syncthreads();

  if (weight_idx < w_dim) {
    if (idy == 0) {
      w_grad[padId * w_dim + weight_idx] += sum_s[0][idx];
    }
  }
}

void hl_context_projection_backward_weight(real* out_grad,
                                           const int* sequence,
                                           real* w_grad,
                                           int num_sequences,
                                           int w_dim,
                                           size_t total_pad,
                                           int context_length,
                                           int context_start,
                                           int begin_pad) {
  CHECK_NOTNULL(out_grad);
  CHECK_NOTNULL(sequence);
  CHECK_NOTNULL(w_grad);

  int threads_x = 32;
  int threads_y = 32;
  int blocks_x = total_pad * ((w_dim + threads_x - 1) / threads_x);
  dim3 threads(threads_x, threads_y);
  dim3 grid(blocks_x, 1);

  KeContextProjectionBackwardWeight<32, 32>
    <<< grid, threads, 0, STREAM_DEFAULT >>>
    (out_grad, sequence, w_grad, num_sequences, w_dim,
     context_length, context_start, begin_pad);
  CHECK_SYNC("hl_context_projection_backward_weight failed");
}

template <>
void ContextProjectionBackwardWeight<DEVICE_TYPE_GPU>(Tensor& out_grad,
                                                      Tensor& w_grad,
                                                      const Tensor& sequence,
                                                      size_t context_length,
                                                      int context_start,
                                                      size_t total_pad,
                                                      size_t begin_pad) {
330
  CHECK(w_grad.getData() && out_grad.getData() && sequence.getData());
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  CHECK_EQ(out_grad.dims_.size(), 2);
  CHECK_EQ(w_grad.dims_.size(), 2);
  CHECK_EQ(sequence.dims_.size(), 1);
  CHECK_EQ(out_grad.dims_[1], w_grad.dims_[1] * context_length);

  hl_context_projection_backward_weight(out_grad.getData(),
                    reinterpret_cast<int*>(sequence.getData()),
                                        w_grad.getData(),
                                        sequence.dims_[0] - 1,
                                        w_grad.dims_[1],
                                        total_pad,
                                        context_length,
                                        context_start,
                                        begin_pad);
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
template <>
void ContextProjectionBackward<DEVICE_TYPE_GPU>(Tensor& out_grad,
                                               Tensor& in_grad,
                                               Tensor& w_grad,
                                               const Tensor& sequence,
                                               size_t context_length,
                                               int context_start,
                                               size_t begin_pad,
                                               bool is_padding,
                                               size_t total_pad) {
    if (in_grad.getData()) {
        ContextProjectionBackwardData<DEVICE_TYPE_GPU>(out_grad,
                in_grad,
                sequence,
                context_length,
                context_start);
    }
    if (is_padding && w_grad.getData()) {
        ContextProjectionBackwardWeight<DEVICE_TYPE_GPU>(out_grad,
                w_grad,
                sequence,
                context_length,
                context_start,
                total_pad,
                begin_pad);
  }
}

375
}  // namespace paddle